TD n°8 (Markov Chain)

Exercice 1.

The first use of stopping theorem for martingales

Theorem (Optional stopping theorem (Doob's Theorem)). Let (M_n) be martingale (resp. sub-/super-) for (X_n) and T be stopping times for (X_n) . If at least one of the following conditions holds :

1. $T \leq N a.s.$, where $N \in \mathbb{N}$

- 2. $T < \infty$ and $\forall n \in N$, $|M_n| \le C$ a.s., where $C \in \mathbb{R}_+$
- 3. $\mathbb{E}(T) < \infty$ and $\forall n \in \mathbb{N}$, $|M_{n+1} M_n| \le C$ a.s., where $C \in \mathbb{R}_+$

Then $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ (resp. \geq / \leq)

The first application : let (X_n) be symmetric walk on \mathbb{Z} , $0 \le i \le N$, let $T = \tau_{[0,N]}$ be time absorbed by 0 or *N*. Propose the martingales to calculate the following values :

- The probability of absorption $\mathbb{E}_i(T)$ starting from *i*, i.e. $\mathbb{P}_i(T_N < +\infty)$,
- The mean of absorption $\mathbb{E}_i(T)$ starting from *i*.

Exercice 2.

Given the following theorems

Foster theorems

Theorem (First Foster theorem). Let (X_n) be a homogeneous irreducible Markov chain of general term $p_{i,j}$ on a countable set E. If there exists a function $h: E \to \mathbb{R}^+$, a finite set F and a constant $\varepsilon > 0$ such that :

$$\sum_{k \in E} p_{ik} h(k) < \infty \quad \text{for all } i \in F$$
$$\sum_{k \in E} p_{ik} h(k) \le h(i) - \varepsilon \quad \text{for all } i \notin F,$$

then (X_n) is positive recurrent.

Theorem (Second Foster theorem). Let (X_n) be a homogeneous irreducible Markov chain of general term $p_{i,j}$ on a countable set E. If there exists a function $h: E \to \mathbb{R}^+$ and a finite set F such that :

$$\mathbb{E}(h(X_1) - h(X_0) | X_0 = i) < +\infty \quad \forall i \notin F$$

$$h(j_0) > \max_{i \in F} h(i) \quad \text{for some } j_0 \notin F$$

$$\sum_{k \in E} p_{ik} h(k) \ge h(i) \quad \text{for all } i \notin F$$

then (X_n) is not positive recurrent.

Consider the following random walk on \mathbb{N} : if $X_n = 0$ then $X_{n+1} = 1$ with probability 1, and if $X_n \ge 1$, then

$$X_{n+1} = \begin{cases} X_n + 1 & \text{with prob. } p \\ X_n - 1 & \text{with prob. } 1 - p \end{cases}$$

Using Foster theorems, determine for which values of *p* this Markov chain is positive recurrent.

Exercice 3.

Aloha Stabilization

Aloha is a communication protocol on a canal shared by several stations unaware of each other. Transmissions and retransmissions can only start at times of type $k\Delta$ with k integer and $\Delta > 0$ the width of a *slot*. When two stations try to transmit simultaneously messages, they interfere and none is actually transmitted. These *conflicts* are detected by stations. The protocol is the following :

— Fresh messages systematically try to pass right after their arrival.

— In case of conflict, each concerned station independently tries to retransmit its message at the next slot with probability 0 < v < 1.

We denote by A_n the number of fresh messages arrived at the beginning of slot n and X_n the number of messages delayed at slot n. We assume that the r.v. A_n are i.i.d. and we set $a_i = \mathbb{P}(A_n = i)$, $\lambda = \mathbb{E}(A_n) = \sum_{i=0}^{\infty} i a_i$.

A - Aloha Instability :

1. Give the probability $b_i(k)$ that *i* stations try to retransmit if *k* stations are in conflict.

We will assume to simplify that the retransmission of a message depends only on itself and not on its station. This has the weird consequence that two messages from the same station can conflict. Under this assumption, $b_i(k)$ represents the probability that *i* messages are retransmitted if *k* ones are delayed.

- **2.** Give the probability $p_{k,l}$ to pass from *k* to *l* delayed messages.
- **3.** Show that this protocol is unstable (i.e., (X_n) is not positive recurrent).
- 4. What does it actually means for the protocol?

B - Aloha Stabilization :

Instead of using a retransmission policy with v fixed, we will try to reach stability using v(k) depending on the number of delayed messages. We will show that the following condition implies stability.

$$\lambda < \lim \inf_{k \to +\infty} (b_1(k)a_0 + b_0(k)a_1)$$

It is equivalent to the existence of $\varepsilon > 0$ and a finite set $F \subset \mathbb{N}$ such that

$$\lambda < b_1(k)a_0 + b_0(k)a_1 - \varepsilon$$
 for all $k \notin F$.

- 5. Under this assumption, prove the stability of the protocol.
- **6.** Study the extrema of $g_k(v) = (1 v)^k a_1 + kv(1 v)^{k-1} a_0$.
- 7. Noticing that $\left(\frac{k-1}{k-a_1/a_0}\right)^{k-1} \xrightarrow{k \to \infty} \exp(\frac{a_1}{a_0} 1)$, give a sufficient stability condition.
- **8.** Explicit this condition when A_n follows a Poisson distribution.
- 9. What is the drawback of this policy?