TD no6 (Markov Chain)

Exercice 1.

1. A dice is thrown repeatedly. For each case, find out whether the sequence of random variables is a Markov chain, and then whether it is homogeneous by giving its transition matrix :
(a) M_{n} is the largest value that occured during the first n drawings.
(b) N_{n} is the number of times the face 1 appeared during the first n drawings.
(c) For the n-th drawing, L_{n} is the time spent from the last occurence of face 1 .
(d) For the n-th drawing, W_{n} is the waiting time spent until the next occurence of face 1.
2. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a Markov Chain over E and h a function from E to F. If h is injective, is $Y_{n}=h\left(X_{n}\right)$ still a Markov chain over F ? Same question if h is not necessarily injective?

Exercice 2.

IEEE 802.11 Protocol to prevent collisions

Consider a system with n stations emitting wifi messages. Time is discrete and an integer $W>0$ is fixed. At the MAC level, the communication protocol follows the following rules :

- If a station i wishes to transmit a message, it independently draws a random integer W_{i} uniformly in $\{0,1, \ldots, W-1\}$. At each time step, it decreases this integer by 1 . When W_{i} reaches 0 , it emits its message.
- When a station emits a message, if it is the only one emitting, then the message is perfectly transmitted. If the station has another message to transmit, it instantaneously draws a new random integer and the same process restarts.
- If two or more stations emits in the same time slot, the messages interfer, it is a collision. All those messages fail their transmissions. Each station tries to resend its message by drawing a new independent random integer and the same process restarts.

1. What is happening in the system if $W=1$?
2. Suppose that at time $t=0$, each station has a fixed number of messages, finite or infinite, to transmit one after the other. Show that the dynamics of the system can be described as a Markov chain $\left(X_{t}\right)_{t \in \mathbb{N}}$ over appropriate states. Illustrate this by drawing the transition graph when $n=2, W=2$ and each station has only 1 message to transmit. Same question when $n=2, W=3$ and each station has an infinite number of messages to transmit.
3. In which cases the chain you have constructed is irreducible and aperiodic?

Exercice 3.

Beware of the Markov property

1. The Markov property does not say that the past and the future are independent given any information about the present. Find a simple example of homogeneous markov chain $\left(X_{t}\right)_{t \in \mathbb{N}}$ over $E=\{1,2,3,4,5,6\}$ such that

$$
\mathbb{P}\left(X_{2}=6 \mid X_{1} \in\{3,4\}, X_{0}=2\right) \neq \mathbb{P}\left(X_{2}=6 \mid X_{1} \in\{3,4\}\right)
$$

2. The strong Markov property does not apply to any time random variable. Find an example of homogeneous markov chain $\left(X_{t}\right)_{t \in \mathbb{N}}$ and a time random variable T such that none of the two conditions of the strong markov properties are satisfied.

Exercice 4.

Casino shopping not gambling

A cashier of your Casino store has already 10 people waiting when he arrives. He needs exactly 1 min to process with one client. But during this minute and independently from anything else, there is a probability

1/3 (resp. 1/6) that one new client (resp. two clients) join the queue. What is the average time for the cashier to empty the queue?

Exercice 5.

To model data arrivals (or error sequences) in a system, rather than choosing i.i.d Bernoulli random variables, one can use a markovian model with two states : state 0 (no arrival / no error) and state 1 (data arrival / error). Maximal sequences of 1 (resp. 0) are called bursts (resp. silences).

1. Let $t \in \mathbb{N}$, denote $X(t)$ the random variable equal to 1 in a burst at time t and 0 otherwise. Suppose that the process $X(t)$ is markovian with $\mathbb{P}(X(t+1)=1 \mid X(t)=0)=p$ and $\mathbb{P}(X(t+1)=0 \mid X(t)=1)=q$. For the stationnary regime, what is the law for the length of bursts (resp. silences)?
2. The IBP model (Interrupted Bernoulli Process) is a variant where the process alternates between silences and bursts. All time lapses are assumed independent and following geometric laws of parameter p and q. During silence periods, no data/error arrives, and during burst periods, at each time step, some new data (or error) may occur independently with probability α ? Let $X(t)$ the random variable equal to 1 (resp 0) if time t belong to a burst (resp. a silence). Let $Y(t)$ be the integer random variable equal to 1 si a new data arrives, and 0 otherwise. Is $Y(t)$ markovian? If not, is it possible to add some information to get a markovian process.

Exercice 6.

Chapman-Kolmogorov without Markov

Let $\left(X_{2 n+1}\right)_{n \in \mathbb{N}}$ be i.i.d. random variables with values in $\{-1,1\}$ and $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. Define also for all $n \in \mathbb{N}^{*}, X_{2 n}=X_{2 n-1} X_{2 n+1}$.

1. Check that the random variables $\left(X_{2 n}\right)_{n \in \mathbb{N}^{*}}$ are independent and follow the law of X_{1}. Show that X_{n} et X_{n+1} are independent. Deduce from this that $\left(X_{n}\right)_{n \in \mathbb{N}^{*}}$ are independent.
2. Compute $\mathbb{P}\left(X_{m+n}=j \mid X_{m}=i\right)$ for all $m, n \in \mathbb{N}^{*}$ et $i, j \in\{-1,1\}$. Deduce the Chapman-Kolmogorov property.
3. Compute $\mathbb{P}\left(X_{2 n+1}=1 \mid X_{2 n}=-1, X_{2 n-1}=1\right)$. Deduce that $\left(X_{n}\right)$ is not a Markov chain.
4. Consider the couples $Z_{n}=\left(X_{n}, X_{n+1}\right), n \in \mathbb{N}^{*}$. Is it a Markov chain? Is it homogeneous?
