Exercise 1.

We are interested in the simulation of a discrete distribution on a finite set $S=\{1, \ldots, n\}$ (without loss of generality). Let p_{i} the probability of occurrence of the value i, with $\sum_{i=1}^{n} p_{i}=1$. You have at your disposal a function Random which returns a random real number in $[0,1]$ with uniform distribution and such that all calls are independent. We allow a pre-computation of time $O(n)$.

1. How to simulate this discrete distribution in time $O(\log n)$ and with one call to Random.
2. Design a method to simulate this discrete distribution in $O(1)$ time and calls to Random.

Hint: reshape the histogram of the distribution (where the bars indicate the frequency of each value).

Exercise 2.

Simulation of a communication channel

Consider the following model of a communication channel in isolation (continuous time and discrete data):

- Traffic Input : packet arrivals follow a Poisson process of intensity $\lambda>0$, that is let T_{n} the arrival date of the n-th packet, then $T_{0}=0$ and inter-arrival $\left(T_{n}-T_{n-1}\right)_{n \in \mathbb{N}^{*}}$ are i.i.d. of law $\operatorname{Exp}(\lambda)$.
- Server: FIFO routing (First In, First Out) with exponential service of rate $\mu>0$, that is let S_{n} the time to process and send the n-th packet, then $\left(S_{n}\right)_{n \in \mathbb{N}^{*}}$ are i.i.d. of law $\operatorname{Exp}(\mu)$.
- Queue: storage with ∞ memory.

1. Find a way to simulate the exponential law using the function Random of Exercise 1 .
2. Use this simulation to write an algorithm simulating the model presented above.
3. Implement this simulation in python (see the attached skeleton example).

- Make a plot of the curve of the number of packets waiting in the queue in function of time.
- Let us consider a scenario when the output traffic is split, and the splitting follows Bernoulli law (with probability p it goes to one direction and with probability $1-p$ it goes to another direction). Make the plots of the output traffics.
- Run some simulations, what can you say about the distribution of the interdeparture times (intervals of time between each departure) on each of the two output directions?

You can then play with several different scenarios (for instance when rate_arrival < rate_departure, and when rate_arrival > rate_departure). What does your observation tell you?

Exercise 3.

Normal law

Let $m, \sigma^{2} \in \mathbb{R}_{+}$, a random variable X follows a normal law $\mathscr{N}\left(m, \sigma^{2}\right)$ if X takes its values in \mathbb{R} and has density $f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}}$.

1. Give an example of a phenomenon following a normal law.
2. Compute the mean and variance of X.
3. Let X, Y be independent normal random variables of laws $\mathscr{N}\left(m_{1}, \sigma_{1}^{2}\right)$ and $\mathscr{N}\left(m_{2}, \sigma_{2}^{2}\right)$, show that $X+Y$ follows the law $\mathscr{N}\left(m_{1}+m_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
