TD nº 1 - Some classical laws

Exercice 1.

Bernoulli and Binomial laws

Let $p \in [0, 1]$. A random variable *X* follows a *Bernoulli law* $\mathscr{B}(p)$ if *X* takes its values $\{0, 1\}$ with $\mathbb{P}(X = 1) = p$ and $\mathbb{P}(X = 0) = 1 - p$.

1. By hand, compute the mean, the variance and the moment-generating series of *X*.

Let $p \in [0, 1]$ and $n \in \mathbb{N}^*$. A random variable *X* follows a *binomial law* $\mathscr{B}(n, p)$ if *X* takes its values in $\{0, ..., n\}$ and $\mathbb{P}(X = k) = {n \choose k} p^k (1-p)^{n-k}$.

2. Give an example of a phenomenon following a binomial distribution $\mathscr{B}(n, p)$.

3. Compute the mean, the variance and the moment-generating series of *X*.

Exercice 2.

Poisson law

Let $\lambda > 0$. A random variable *X* follows a *Poisson law* $\mathscr{P}(\lambda)$ if *X* takes its values in \mathbb{N} and $\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$.

1. Give an example of a phenomenon following a Poisson distribution $\mathscr{P}(\lambda)$.

2. By hand, compute the mean, the variance and the moment-generating series of *X*.

3. Show that if *X* and *Y* are two independent random variables following Poisson laws of parameters λ and μ , then *X* + *Y* follows the Poisson law of parameter $\lambda + \mu$.

The Poisson approximation principle states that the sum S_n of many independent Bernoulli random variables with small parameters almost follows a Poisson law of parameter $\mathbb{E}(S_n)$.

4. Illustrate this principle by proving that for $\lambda > 0$, any sequence of random variables $(X_n)_{n \in \mathbb{N}}$ respectively following a binomial law $\mathscr{B}(n, \lambda/n)$ converges in distribution (*Fr* : *convergence en loi*) to a Poisson law $\mathscr{P}(\lambda)$.

The *Poisson approximation principle* states that the sum S_n of many independent bernoulli random variables $X_1,...,X_n$ with small parameters, tends to follow a Poisson law of parameter $\mathbb{E}(S_n)$.

5. 1000 competitors attend a fishing competition, each one having independently a probability 0,0001 to hook a fish and win a victory medal. The organizing commitee has bought 2 medals, is it enough to reward all the winners with probability at least 80 %?

Exercice 3.

Geometric law

Exponential law

Let $p \in [0,1]$. A random variable *X* follows a *geometric law* $\mathcal{G}(p)$ if *X* takes its values in \mathbb{N}^* and $\mathbb{P}(X = k) = (1-p)^{k-1}p$.

- **1.** Give an example of a phenomenon following a geometric law $\mathscr{G}(p)$.
- **2.** Compute the mean, the variance and the moment formal series for *X*.

3. Show that geometric laws are memoryless : for all $n, k \in \mathbb{N}$, $\mathbb{P}(X = k + n \mid X > n) = \mathbb{P}(X = k)$.

Exercice 4.

Let $\lambda > 0$, a random variable *X* follows an *exponential law* $Exp(\lambda)$ if *X* takes its values in \mathbb{R}_+ with density $f(x) = \lambda e^{-\lambda x}$.

- **1.** Give an example of a phenomenon following an exponential law $\text{Exp}(\lambda)$.
- **2.** Compute the mean and the variance of *X*.
- **3.** Show that exponential laws are memoryless : for all $a, b \in \mathbb{R}_+$, $\mathbb{P}(X \ge a + b \mid X \ge b) = \mathbb{P}(X \ge a)$.

4. Show the converse : any memoryless continuous law is exponential.

5. Let $X_1, ..., X_n$ be independent exponential random variables of parameters $\lambda_1, ..., \lambda_n$. Show that the random variable $\min(X_1, ..., X_n)$ also follows an exponential law and find its parameter. Then, compute $\mathbb{P}(\min(X_1, ..., X_n) = X_i)$ for $1 \le i \le n$. *Suggestion* : start with n = 2.

Exercice 5.

Normal law

Let $m, \sigma^2 \in \mathbb{R}_+$, a random variable *X* follows a *normal law* $\mathcal{N}(m, \sigma^2)$ if *X* takes its values in \mathbb{R} and has density $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$.

1. Give an example of a phenomenon following a normal law.

2. Compute the mean and variance of *X*.

3. Let *X*, *Y* be independent normal random variables of laws $\mathcal{N}(m_1, \sigma_1^2)$ and $\mathcal{N}(m_2, \sigma_2^2)$, show that X + Y follows the law $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Exercice 6.

Will the sun rise tomorrow?

A long time ago, a number p was chosen at random uniformly between 0 and 1, but this value was never revealed to mankind. Since this time, the sun rises every day with probability p (still unknown). What happened during the preceding days is independent of what happens today. You know that the sun has risen every day from the beginning, that is n times (and you know this number), what is the probability that it will rise tomorrow?