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The basic idea of sensitivity analysis is very simple: the tableau gives you the optimal solution of the
LP. But it actually gives MUCH MORE information on the structure of your solution ! The content of
this lecture is devoted to give you some basic ideas of the information you can extract from a LP. More
information can be derived. The interested reader is for referred to Chapter 3 of “Applied Mathematical
Programming” for instance.

Let us first recall the Dovetail LP:

max
(x1,x2)∈R2

3 · x1 + 2 · x2.

under the constraints
3 · x1 + x2 ≤ 18

x1 + x2 ≤ 9

x1 ≤ 7

x2 ≤ 6

x1, x2 ≥ 0

and the tableau of its optimal solution:

0 0 − 1
2 − 3

2 0 0 − 45
2

1 0 1
2 − 1

2 0 0 9
2

0 1 − 1
2

3
2 0 0 9

2

0 0 − 1
2 − 1

2 1 0 5
2

0 0 1
2 − 3

2 0 1 3
2

Optimal solution and value.

Let us first recall that you can read the optimal solution on the column at the right of the LP. For the
initial variables, their values give you their value in the optimal solutions. For the slack / surplus vari-
ables, their value represent the distance between the optimal point and the hyperplane corresponding
to the constraint. If the value equals 0, then the constraint is tight (and you can the optimal point is at
the intersection of the tight constraints).

Shadow prices.

The shadow price associated with a particular constraint is the change in the optimal value per unit
increase in the right-hand-side value for that constraint, all other problem data remaining unchanged.

Suppose that the wood capacity in the first constraint of our model

3x1 + x2 ≤ 18
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is increased from 18 to 19 cubic meters. We have an additional cubic meter of wood at no cost. So our
new constraint in the standard LP becomes

3x1 + x2 + x3 = 19⇔ 3x1 + x2 + (x3 − 1) = 18

with a non negative x3. But we can also write it in the following way:

3x1 + x2 + x3 = 18 and x3 ≥ −1

And then, when we look at objective function, we realize that instead of staying at a position where
x3 = 0 we should push it to −1 (the coefficient is negative in the objective function, so decreasing x3
without modifying x4 improves the value of the solution). Note that since x3 is a slack variable, it does
not affect other constraints in the initial LP (x3 only appears in that constraint).

What is the contribution to the optimal profit of this additional unit of capacity? If we set x3 = −1
unit and keep x4 to zero, we increase the value by 1

2 unit.
So the shadow price of a constraint equals the opposite of its value in the objective vector. In partic-

ular, if a constraint is not tight, then its shadow price equals 0.

Right-hand ranges.

Is it possible to determine the coordinate of the new solution? And, second question, up to which point
is it possible to know that this modification of the optimal solution is correct? And when thing changes,
can we guess which variables are entering or leaving the basis? The answer to all these questions are
positive.

Case 1: the slack / surplus variable is in the basis.
Let us illustrate this case on our example: the variable x5, which is the slack variable for the long
matches boxes is in the basis. So if we replace the RHS = 7 at the beginning by the equality = 7 + α,
then we can keep exactly the same set of constraints but write

x1 + (x5 − α) = 7

rather than x1 + x5 = 7 + α.
So by performing the same set of pivoting operations we finally obtain in our third row:

(x5 − α) + Non Basic Term =
3

2

The variable x5 remain positive (and we then have a feasible solution as long as α ∈ [− 5
2 ,+∞[. In other

words, if the RHS is between 9
2 and +∞, the basis is not modified. We can geometrically check that

this is indeed correct since by pushing the equation to the right we do not add any constraint and if we
push it to the left, we have to push (to the left) by its distance to the optimal point which is 3

2 .
Let us now try to determine which variable will enter and leave the basis. It is easy to determine

which variable has to leave the basis. Indeed, if α < − 3
2 then the variable x5 becomes negative. So

x5 has to leave the basis. Let us now explain how we can determine which variable is entering in the
basis. We want to ensure that, after the pivot operation, all the coefficients of the objective function
remain negative (to ensure that the solution is still optimal). So let us look at z(t)=(Obj Vector) - t (Row
corresponding to x5), we have the following terms::

z(t) =
1

2
(−1− t)x3 +

1

2
(−3 + t)x4 +−tx5 (1)

And (i) one of these values must be equal to 0 (one variable must be in the basis) and (ii) all the other
coefficients have to be non-positive (since otherwise the solution would not be optimal). And then in
that case we have:

t =
3

2

and the variable entering in the basis is x4.
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Geometric interpretation. When the box constraint is pused down, at some point, it should become
tight. Then the variable is leaving the basis. If we continue to push, the machine constraint is not tight
anymore, so the corresponding slack variable has to leave the basis.

In general, we can apply the same rule. If the slack/surplus variable x is in the basis. And we can
then compute easily:

• The RHS interval for which the solution remains the same is an interval of the form ] −∞, α] or
[α,+∞],

• and we know that x is leaving the basis on α,

• and we can determine which variable is entering in the basis on α.

Case 2: the slack / surplus variable is not in the basis.
Let us prove that we can make the same if the slack variable is not in the basis.

Let us illustrate this case on our example: the variable x3, which is the slack variable for the wood
constraint which is not in the basis (in other words, the constraint is tight). As in the first case, the
modification of the RHS by α can also be interpreted as ≥ 18 and the variable x3 can be replaced by
x3 − α. And it can be performed during all the algorithm. So in the final tableau we have the following
tableau

x1 +
1

2
(x3 − α) + · · · =

9

2

x2 −
1

2
(x3 − α) + · · · =

9

2

x5 −
1

2
(x3 − α) + · · · =

5

2

x6 +
1

2
(x3 − α) + · · · =

3

2

And, as in Case 1, the variable remains in the basis as long as the variables x1, x2, x5, x6 remain negative
(indeed it is the best solution we can hope for since the non-basic terms remain equal to 0 and the value
of the solution is a constant minus a positive function of the non-basic variables.

So x3 remains out of the basis as long as:

−1

2
α ≤ 9

2
1

2
α ≤ 9

2
1

2
α ≤ 5

2

−1

2
α ≤ 3

2

In other words, we have:
−3 ≤ α ≤ 5.

And then the variables remains tight as long as the RHS remains in [15, 23].

• The variable leaving the basis is the variable that becomes negative.

• The variable entering in the basis can be determine as in Case 1.
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Pricing out new activities⇔ Addition of variables

Is it the only information we can extract from the tableau? Not at all. Let us first show that, we can
determine if a new activity can be interesting or not !

Assume that the “Dovetail” company has a new opportunity to produce toothpick. To produce
100, 000 boxes of toothpicks, we need 1 cubic meters of wood and 100, 000 small boxes. But the amount
of time in the production machine (which can also produce toothpicks !) is twice the time necessary to
produce short or long matches boxes. The profit for this new activity would be of 2, 500$ for 100, 000
boxes of toothpicks. One can indeed add a new variable to the LP and solve it in order to determine if
this activity is interesting or not. However, there is another option that permit via a simple calculation
using the optimal tableau to determine if this activity is interesting or not.

In order to determine that, we have to consider the shadow prices of the constraints. Indeed, assume
that we decide to produce toothpicks. How much money do we generate? The hypothesis tells us that
we are generating 2, 500$ unit of profit. So we have to determine what is the “cost” of producing them.
If we decide to produce one unit, we “lose one unit of wood and two units of production. We have seen
just before that the opposite of the coefficients of the final objective function give the amount of money
we gain / lose if the corresponding RHS is increased / decreased. So in that example, so it is interesting
to produce toothpicks iff:

1

2
· 1 + 3

2
· 2 ≤ 2.5

So in that case, it is not interesting to start the new production ! And we can decide it via the computa-
tion of a single equation... We do not need to compute a new LP.

Solution of the dual.

The solution of the dual can be read on the final tableau: the optimal solution of the dual is ( 12 ,
3
2 , 0, 0).

Before explaining why, one can easily check that it satisfies all the constraints of the dual and that the
value of that solution for the dual is 18 · 12 + 9 · 32 = 45

2 . This solution is indeed optimal by the Strong
Duality Theorem.

Generally speaking, in order to read the optimal solution of the dual (when the initial LP is in
canonical form), we just have to read the coefficient in the objective function of the slack variable of the
corresponding constraint to find its value in the optimal solution of the dual. This is not very surprising
since we have seen that the shadow prices correspond to the benefit we get from an additional unit of
resource... But then it is also the value we “price” one unit of resource, and then the minimum price at
which we can accept to sell this resource.

And the price at which we accept to sell the resource exactly corresponds to the economic interpre-
tation of the dual.

Dual simplex algorithm
Computing a solution of the dual then just consists in making operation on the rows rather than on the
columns of the matrix. We know that opposite of the objective function row is a solution of the dual. So
if at the beginning of Phase I, we do not have a solution of (P) but we have a solution of (D), in other
words, we can find a solution for which all the “coefficients” are negative expressed in term of non-
basic variables but some non-negativity constraints are violated, then we can little by little improve our
solution by looking at some violated constraint (ie a negative coefficient in the last column) and modify
the basis in order to get finally a solution where all the coefficients are positive. It consists in making
moves in the dual up to obtain an optimal solution of it...
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