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1 Rewrite LPs: standard and canonical forms

Some conventions. Let us first give a few conventions concerning LP.

• If we consider a maximization problem and the function f is unbounded in F we say that the
optimal value is +∞. If F is empty we say that the optimal value is −∞.

• If we consider a minimization problem and the function f is unbounded in F we say that the
optimal value is −∞. If F is empty we say that the optimal value is +∞.

A Linear Program (or polytope) is in canonical form if its matrix constraint is of the form Ax ≤ b,
x ≥ 0. It is usually one of the “simplest way” of understanding the shape of a polytope. Unfortunately,
it is not the most convenient way of representing a LP from an algorithmic / programming point of
view. Indeed, while inequalities are somehow hard to handle for a computer, equalities are much easier
to catch. In what follow we define the standard form of a polytope and explain how we can obtain this
LP from any LP.

1.1 Standard form of a linear program

A linear program can be a maximization or a minimization problem. The constraints can be represented
using equalities or inequalities. The variables can be free or non negative. In this part we will show that
all these formulations are equivalent since any formulation can be transformed into any other. We will
introduce a standard form for a LP. This standard form is not necessarily the easier to read or understand
but it is the one which is at the core of the simplex algorithm.

We first reorganize the inequalities with all the variables at the left-hand side (LHS) of the constraints
and the constant terms at the right-hand side (RHS) of the constraints.

Inequality constraints. Let us first assume that we have the following constraints.

m∑
j=1

xij ≤ si for all i ≤ 2.

2∑
i=1

xij ≥ di for all j ≤ m.

If we want to transform these inequalities into equalities, we create a new variable for each constraint.
The variables yi and zj are defined as follows.

yi = si −
m∑
j=1

xij for all i ≤ 2.

zj =

2∑
i=1

xij − di for all j ≤ m.
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The variables yi represent the difference between the available ressources and the amount of ressources
used in practice. Such variables, coming from ≤ inequalities, are called slack variables and represent the
amount by which the right-hand side exceeds the left-hand side. On the other hand, the variables zj
represent the “excess” of production compared to the desired one. Such variables, which come from ≥
inequalities, are called surplus variables and represent the amount by which the left-hand side exceed the
right-hand side. Note that we construct these inequalities in such a way, if the constraints are satisfied
then the slack and the surplus variables are non negative. Moreover, if the constraint is tight at some
point x then the slack/surplus variable equals 0 at this point. Using slack and surplus variables, we can
always transform inequality constraints into equality constraints in the following way:

yi +

m∑
j=1

xij = si for all i ≤ 2.

2∑
i=1

xij − zj = di for all j ≤ m.

where all the variables yi and zj are non-negative.

Free variables. Up to this point, we have only seen non-negative variables. In many cases, this constraint
is satisfied. However it is not necessarily the case. A variable which is not necessarily non negative is
called free. Assume that some LP has a free variable x. Then we can replace x by two variables x+ and
x− and modify the LP in the following way:

• Each occurrence of x is replaced by x+ − x−.

• We add two non-negativity constraints x+, x− ≥ 0.

Positivity of the RHS. If a constraint has a negative RHS after these transformations, we multiply both
side of the equality by −1 in order to obtain a non-negative RHS.

Example of Dovetail. Let us transform our favorite example of “Dovetail” into the standard form.
Recall that the LP is:

max
(x1,x2)∈R2

3 · x1 + 2 · x2.

under the constraints
3 · x1 + x2 ≤ 18

x1 + x2 ≤ 9

x1 ≤ 7

x2 ≤ 6

x1, x2 ≥ 0

There are no free variables. So we just have to add slack variables. The resulting constraints are the
following:

3 · x1+x2 +x3 =18

x1+x2 + x4 =9

x1 +x5 =7

x2 + x6 =6

x1, x2, x3, x4, x6, x6 ≥ 0

Or in matrix notation we have:


3 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1



x1
x2
x3
x4
x5
x6

 =


18
9
7
6
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The feasible region of this linear program seems more complicated than the feasible region of the
original problem, but this is not true: the feasible region has the same “shape”. We have not created
new solutions in the sense that the “projection” of a solution of the new LP provides a solution of the
original LP.

1.2 Basic and nonbasic variables

Remark 1: Basic Feasible Solutions and canonical form. Assume that we have a polyhedron that
is given in its canonical form (i.e. only with ≤ constrains and non negative variables). Assume that
the polyhedron has m constraints (except the non negativity variables) and n variables. Then a basic
feasible solution is a point that is tight for at least n constraints. Note that some of them may be the
non-negativity constraints

So when we consider the standard form the corresponding LP, at least n variables of the correspond-
ing solution are equal to 0. Indeed:

• If a constraint is tight, then its slack variable is equal to 0.

• If an initial variable equals 0, then it is indeed equal to 0...

Exercise 1. Prove that a solution is degenerate if and only if more than m variables are equal to 0 in the corre-
sponding solution in the LP in standard form.

Basic variables In the previous paragraph, we have seen that in a LP in standard form, it suffices to
choose m variables that might not be equal to zero and that the other can be put to zero. So in what
follows, we will have a set of m basic variables and n non-basic ones. The goal would consist in finding
the basic feasible solution corresponding to this set of basic variables and express the objective vector
in terms of the non-basic ones.

Before defining formally all these notions, let us illustrate them on the “Dovetail” example.

Illustration on our example. We have a linear system with 6 variables and only 4 equations. Each
vertex of the polyhedra corresponds in the initial LP at the intersection of two “equality” constraint
(since the space of variable has dimension two). So, in other words, it corresponds to set two variables
to zero and then try to find (if it exists) the point of intersection of the four remaining constraints (of the
new LP). Note that since we consider affine spaces, the intersection of these four affine spaces can be
empty (for instance if two remaining constraints are “parallel”).

Let us choose a set of variables that are to be set to zero, say NI = {3, 4}. The variable xi is put to
zero if i ∈ NI . Let BI = {1, 2, 3, 4, 5, 6} \NI . The sets NI and BI partition the set of variables. The set
NI is said to be the set of nonbasic variables and the set BI is called the set of basic variables. If we put the
nonbasic variables on the right hand side, we can rewrite the constraints of the model as:

3 · x1+x2 =18 −x3
x1+x2 =9 − x4
x1 +x5 =7

x2 + x6 =6

Or in matrix notation: 
3 1 0 0
1 1 0 0
1 0 1 0
0 1 0 1



x1
x2
x5
x6

 =


18
9
7
6

−

1 0
0 1
0 0
0 0

(x3x4
)

Let us denote by B the 4 × 4 matrix of the left hand side (B stands for basic), xB the vector of the
left hand side. We denote by b the vector of constraints, by N the non-basic matrix (where N stands for
non-basic) and by xN the vector of the right hand side.
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Since B is invertible (i.e. B−1 exists, i.e. BxB = 0 ⇒ xB = 0), we can invert this matrix and
determine xB in function of xN . More formally we have:

x1
x2
x5
x6

 =


3 1 0 0
1 1 0 0
1 0 1 0
0 1 0 1


−1

18− x3
9− x4

7
6

 =


1
2 − 1

2 0 0
− 1

2
3
2 0 0

− 1
2

1
2 1 0

1
2 − 3

2 0 1



18− x3
9− x4

7
6

 =
1

2


9− x3 + x4
9 + x3 − 3x4
5 + x3 − x4
3− x3 + 3x4


This means that the basic variables can be expressed in terms of the nonbasic variables. So, once we

have fixed the values of the nonbasic variables, we know the values of the basic variables. In particular,
if we set our nonbasic variables to zero, i.e. x3 = x4 = 0, then we find x1 = x2 = 9

2 (as we expect !
why?) and x5 = 5

2 and x6 = 3
2 . Note that it means that when the constraints 1 and 2 are tight (since

the difference between the LHS and the RHS equal zero). The difference between the LHS and the RHS
in constraint 3 is 5

2 and the difference in constraint 4 is 3
2 . In particular these two last constraints are

non-binding. On the opposite, the constraints 1 and 2 are binding (since x3 and x4 are equal to zero).
Note that we can also (and it is a second huge advantage of the simplex algorithm) state our objective

function in terms of the nonbasic variables:

3x1 + 2x2 =
3

2
· (9− x3 + x4) +

2

2
(9 + x3 − 3x4) =

45

2
− 1

2
x3 −

3

2
x4

Recall that we are trying to maximize this function. This expressions states that if we are “currently”
at the vertex ( 92 ,

9
2 ), and we consider increasing x3, then for every unit by which we increase x3, the

objective value will decrease by 1
2 units. Likewise, for every unit by which we increase x4, the objective

value decreases by 3
2 units. So, since x3, x4 ≥ 0, this expression states that we are currently in a local

maximizer of our objective function.
Since we have seen that a local maximizer of a LP also is a global optimizer, the point x1 = x2 = 9

2
provides a global optimizer. And then, if we choose x3 = x4 = 0, our “current” vertex is optimal.

Note that the coefficients of x3 and x4 in the right hand side are the shadow prices of the constraints
1 and 2 respectively. Let us informally explain why: consider the constraint 2. Assume that we increase
the productivity of the machine by 1 unit. It is equivalent to say that the constraint on x4 is x4 ≥ −1
unit instead of x4 ≥ 0. And then our expression ensures that the objective function increases by 3

2 units,
which is precisely what we obtained.

2 Improvment of solutions: Pivoting

In the previous lecture, we have seen that when we choose the “best” basis, then we obtain the optimal
solution. Let us now explain how we can improve the solution when we do not choose the best basis at
the beginning.

In the “Dovetail” example, a natural basis is the basis BI = {3, 4, 5, 6}. Indeed the matrix B which
is the matrix

(
A Im

)
restricted to the last 4 columns is the matrix I4. So in particular, the matrix is

invertible. Moreover since B = B−1 = I4 and since b ≥ 0, we have B−1b ≥ 0. So BI is a basic feasible
solution. And we have NI = {1, 2}. In particular we have:

xB = b−NxN

In the following we express the basic variables in terms of the nonbasic variables. So we have:
x3
x4
x5
x6

 =


18− 3x1 − x2
9− x1 − x2

7− x1
6− x2


Because of this set of equalities, we can easily express the objective function in terms of the nonbasic
variables (which is already the case): max 3x1 + 2x2.

So it seems profitable to increase x1 or x2 in order to obtain a better solution (note that the current
solution puts both x1 and x2 to zero, so the current solution equals zero which is obviously not optimal).
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Let us try to increase x1. How far can we increase x1? Clearly if x1 increases too much, we leave the
feasible region. In order to determine the “limits” of the growth of x1, let us look at the constraints and
determine up to which point x1 can be increased without violating the non-negativity constraints. We
have:

x3 = 18− 3x1 − x2 ≥ 0 ⇒ x1 ≤ 6

x4 = 9− x1 − x2 ≥ 0 ⇒ x1 ≤ 9

x5 = 7− x1 ≥ 0 ⇒ x1 ≤ 7

x6 = 6− x2 ≥ 0 has no constraint on x1.

So x1 can be increased up to min(9, 6, 7) = 6 without violating any constraint. This test is usually called
the ratio test. When x1 is increased up to 6, x3 decreases to 0. Differently, when x1 = 6, two variables
are equal to 0: x3 and x2. So we have a new basic solution: the variable x1 is added in BI (and deleted
from NI) and x3 is added in NI (and deleted from BI). This operation is called a pivoting or a pivot
operation. The modification of the basis modify the equation system:

3 0 0 0
1 1 0 0
1 0 1 0
0 0 0 1



x1
x4
x5
x6

 =


18
9
7
6

−

1 1
1 0
0 0
1 0

(x2x3
)

=


18− x2 − x3

9− x2
7

6− x2


At this point we should compute the invert of the current matrix B in order to determine x1, x4, x5, x6
in terms of the non-basic variables.

x1 = 6− 1

3
x2 −

1

3
x3

x4 = 3− 2

3
x2 +

1

3
x3

x5 = 1 +
1

3
x2 +

1

3
x3

x6 = 6− x2
And the objective function can be written in terms of the nonbasic varaibles as: max 3(6− 1

3x2−
1
3x3) +

2x2 = 6− x2 − x3 + 2x2 = 18− x3 + x2.
So the “current basic solution” gives a solution of 18 (which is not optimal since we know that the

optimal value is 22.5). But we can see that if we make a pivoting operation on x2 then we will increase
the value of the solution. Indeed, increasing x3 can only decrease the value of the solution but increasing
x2 can only increase this value.

So as in the previous case, we want to determine up to which point x2 can be increased.

x1 = 6− 1

3
x2 −

1

3
x3 ≥ 0 ⇒ x2 ≤ 6 · 3 = 18

x4 = 3− 2

3
x2 +

1

3
x3 ≥ 0 ⇒ x2 ≤ 3 · 3

2
=

9

2

x5 = 1 +
1

3
x2 +

1

3
x3 ≥ 0 ⇒ no restriction on x2

x6 = 6− x2 ≥ 0 ⇒ x2 ≤ 6

So x2 can increase up to 9
2 and this is tight for the constraint 2. So the variable x4 and x2 can be

exchanged in the basis. More precisely we can add x2 in BI and we can add x4 in NI . So at this point
we have

BI = {1, 2, 5, 6} and NI = {3, 4}
We precisely considered that case at Lecture 1 and then a sequence of pivoting rules lead to the

optimal solution (do it).

3 Simplex tableau

We have developed a general method (pivoting) which ensures that we can improve our solution at
any step. Let us now explain briefly how we can represent the input of a LP into a computers. We will
represent LPs with Simplex Tableaux.
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Assume that we have a basis BI and let NI be the decision variables which are not in BI . Our
simplex tableau will contain m + 1 rows where m is the number of constraints and the additional row
will represent the objective function. When we represent we will put the objective function on the first
row and separate this row from the others with a horizontal line. The columns of the simplex tableau
correspond to the decision variables. There is an additional row which represents the vector b. We
assume that we have a natural order on the constraints and on the decision variables: the i-th row
corresponds to the i-th constraints and the i-th column corresponds to the i-th variable.

The coefficient ai,j of the array is the coefficient of xj in the i-th constraint. The j-th coefficient aj of
the row of the objective function is the coefficient of xj in the objective function and has to be equal to
zero if xj is a basic variable (we have seen that it is possible to do that). Moreover, if xj is in the basis
then the column of j must contain precisely one nonnegative entry which has to be equal to one. In
other words, the submatrix restricted to the columns of the basic variables has to be “isomorphic” to
the identity matrix. In the last column of the row of the objective function, we put the current value of
the objective function.

Let us illustrate the example of the previous section.

max 3x1 + 2x2

under 
3 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1



x1
x2
x3
x4
x5
x6

 =


18
9
7
6


At the beginning we have chosen BI = {3, 4, 5, 6}. Note that the matrix restricted to the variables of the
basis is already isomorphic to the identity matrix. Moreover the objective function is written in terms
of the non-basis variables. So the matrix and the objective function already have the good shape. And
the Simplex tableau can be written in the following way:

3 2 0 0 0 0 0
3 1 1 0 0 0 18
1 1 0 1 0 0 9
1 0 0 0 1 0 7
0 1 0 0 0 1 6

In order to improve the solution, we can add x1 or x2 in the basis. Note that the ratio test for x1 can
be done on the Simplex tableau by just dividing for each constraint the value of the last column by
the coefficient of x1 in the row and keeping the smallest value (for instance for x1 and for the first
constraints, we can increase x1 up to 18/3 = 6).

Let us illustrate on this simplex tableau the modification of the basis into BI = {x1, x4, x5, x6}. As
before, we proceed by making a Jordan Gauss elimination (we subtract one third of the second rows to
the third and fourth columns). It gives:

3 2 0 0 0 0 0
1 1

3
1
3 0 0 0 6

0 2
3 − 1

3 1 0 0 3
0 − 1

3 − 1
3 0 1 0 1

0 1 0 0 0 1 6

We do not have yet a simplex tableau since the row of the objective function has not been modified: we
have to express x1 in function of the non basic variables. And so we have:

0 1 −1 0 0 0 −18
1 1

3
1
3 0 0 0 6

0 2
3 − 1

3 1 0 0 3
0 − 1

3 − 1
3 0 1 0 1

0 1 0 0 0 1 6

Simplex tableaux give a nice way to represent in a compact way LP. In the following, we will essen-
tially use this notation to represent linear programs.
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4 Termination criterion

Assume that the Linear Programming is written in the following way:

max cTNxN + S(
I A

)(xB
xN

)
= b

x ≥ 0

where b ≥ 0, xB is the vector of a basic feasible solution. So in particular, when xN = 0, the we can
obtain a feasible solution of value S. We can stop when:

1. If we have cN ≤ 0 and then the optimal value equals S.

2. If there exists a coefficient ci of cN such that ci is positive and every coefficient of the column of xi
in
(
I A

)
are non-positive. And then the solution is infinite

In what follows, we prove that the claim above is true.

4.1 Point 1: finite optimal value

Let xB = b and let xN = 0. We have (
I A

)(xB
xN

)
= b.

Moreover the value of this solution is S. Now assume that there exists a better solution y =

(
yB
yN

)
.

Since yN ≥ 0 and since c ≤ 0, we have cTNyN ≤ S, contradicting the fact that it is a better solution.

4.2 Point 2: infinite optimal value

Assume now that there exists a coefficient of cN which is positive, say it corresponds to the variable
xi. Assume moreover that any coefficient of the column of A corresponding to xi, there are only non-
positive values. Note that the form of the matrix ensures that there exists a variable xj such that xj
appears in only one row, which is the row j. Consider the vector xMN such that for every j ∈ NI \ i,
xj = 0 and such that xi = M . Now consider the vector xB such that for every j ∈ BI we have
xj = bj−aj,iM (where aj,i is the coefficient of the j-th row in the column corresponding to i). Note that
the vector xB is nonnegative since b is non negative, M is non negative and ai,j is non-positive. So the

vector x =

(
xB
xN

)
satisfies the constraint.

The objective function strictly increases (linearly) when M increases. So if M is arbitrarily large, the
objective function grows arbitrarily. And then the objective function is unbounded.

Let us see on some example what really happens in this case. Consider the following LP:

max(2x1 + x2)

Subject to:

x1 − x2 ≤ 10

2x1 − x2 ≤ 40

x1, x2 ≥ 0.

The addition of slack variables permits to write the LP in standard form. The two slack variables are
called x3 and x4 and the corresponding tableau is

2 1 0 0 0
1 −1 1 0 10
2 −1 0 1 40
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Let us first put x1 into the basis. One can note that x3 leaves the basis (since x1 ≤ 10 is given by the
first constraint). We obtain the tableau:

0 3 −2 0 −20
1 −1 1 0 10
0 1 −2 1 20

Since x2 has a positive coefficient in the objective function, we have no reach the optimal value. This
pivoting operation ensures that x2 enters in the basis and x4 leaves the basis.

0 0 4 −3 −80
1 0 −1 1 30
0 1 −2 1 20

Again the tableau is not optimal. Indeed the coefficient of x3 is positive. So we want to apply a pivot
operation on x3 (the coefficient of x4 is negative so it is not possible to pivoting on x4). But the problem
is the following: the constraints does not give any constraint on x3. Indeed:

−x3 ≤ 30⇒ x3 ≥ −30

−2x3 ≤ 20⇒ x3 ≥ −40

So it means that, if x3 enters in the basis, then we can arbitrarily increase x3 without violating any
constraint. Since the coefficient in front of x3 is positive, it means that we can arbitrarily increase the
value of the objective function without violating constraints. Thus the optimal value is unbounded !

More formally, what we have is that for any nonnegative δ, the point (30+ δ, 20+ 2δ, δ, 0) is feasible.
Since the objective function at this point has value 80 + 4δ, we see that the problem is unbounded.

Clearly, unboundedness of a problem can occur only when the feasible region is unbounded, which,
unfortunately, is something we cannot tell in advance of the solution attempt. In the above example,
we detected unboundedness when we encountered a pivot column that does not contain any positive
entry. More generally, we can in fact declare a problem as unbounded if any (nonbasic) column, not
necessarily associated with the entering variable, is identified to have the above-stated property at the
end of an iteration. Referring back to the initial tableau, we see that, indeed, the x2-column had this
property. Therefore, we could have concluded that the problem is unbounded at the outset.

Note finally that if the function is a minimization function, then the criterion are reversed.

5 Simplex algorithm

A scheme of algorithm. We choose arbitrarily a set of nonbasic decision variables, and called the
other variables basic. Then, we rewrote the system of constraints by putting the nonbasic variables in
the right hand side. More formally, in order to construct the new system of constraints we have just
done the following:

• We keep the columns corresponding the the basic variables on the left hand side.

• We move the columns corresponding to the nonbasic variables on the right hand side.

Then we have inverted the matrix to write the basic variables in function of the nonbasic variables. For
doing that we have to be sure that the set of basic variables is induces a invertible matrix. So what
was really important in our choice of basic and nonbasic variables was not the number of nonbasic
variables, but the number of basic variables. We choose as many basic variables as there are constraints:
in this case we have a chance that B is invertible. (Recall that if a matrix is not squared, then it is not
invertible).

After this transformation, we do the following:

• We check that all the variables are non-negative (hopefully it is the case there).

• We express the objective function in terms of the nonbasic variables.
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If all the elements of the objective vector are negative, then we have a local maximizer, which then is
a global maximizer. Indeed, it means that if we modify locally a bit our nonbasic variables (which are
minimized in the current point) then we can only increase the non-basic variables and then decrease the
value of the solution. On the opposite, if one element of the objective vector is positive, then it means
that we have a “direction to follow”. Indeed, if we increase the value of the nonbasic variable, then we
can increase the value of the solution. So we will try to put this variable in the set of basic variable and
put another variable in the set of nonbasic variables. This operation is called a pivot.

Thus we can repeat this produce by modifying the set of nonbasic variables until we find an optimal
solution. However we need an initial feasible solution in order to start this algorithm.

A few advantages of the Simplex Algorithm. The simplex algorithm will take as data a LP in stan-
dard form (called canonical form in Bradley, Hax, Magnanti) and solve it. As we already mentioned,
the Simplex Algorithm will consist in looking for a local maximizer which is also a global maximizer.
The simplex algorithm has many advantages:

• It is robust since it can solve any linear program (unbounded linear programs or linear programs
with empty feasible regions). Moreover it can detect redundant constraints.

• It is self-initiating since it uses itself to generate an initial feasible solution or show that the problem
does not have any solution.

• It provides more information than the optimal solution. It indicates how the optimal solution is mod-
ified in function of the data (sensitivity analysis).

Before introducing the simplex algorithm, we need the following notion of standard form.
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