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1 Reminder of Linear Algebra definitions

Let x1, . . . , xm

be points in Rn and �1, . . . ,�m

be real numbers. Then x =

P
m

i=1 �i

x
i

is said to be a:

• Linear combination (of x1, . . . , xm

) if the �
i

are arbitrary scalars.

• Conic combination if �
i

� 0 for every i.

• Convex combination if
P

m

i=1 �i

= 1 and �
i

� 0 for every i.

In the following, � will still denote a scalar (since we consider in real spaces, � is a real number). The
linear space spanned by X = {x1, . . . , xm

} (also called the span of X), denoted by Span(X), is the set of
points x of Rn which can be expressed as linear combinations of x1, . . . , xm

. Given a set X of Rn, the
span of X is the smallest vectorial space containing the set X . In the following we will consider a little
bit further the other types of combinations.

A set x1, . . . , xm

of vectors are linearly independent if
P

m

i=1 �i

x
i

= 0 implies that for every i  m,
�
i

= 0. The dimension of the space spanned by x1, . . . , xm

is the cardinality of a maximum subfamily of
x1, . . . , xm

which is linearly independent.
The points x0, . . . , x`

of an affine space are said to be affinely independent if the vectors x1�x0, . . . , x`

�
x0 are linearly independent. In other words, if we consider the space to be “centered” on x0 then the
vectors corresponding to the other points in the vectorial space are independent.

2 Convex sets and functions

In the following we denote by || · || a norm on Rn (we refer the reader to a linear algebra book for the
formal definition of a norm). The distance between x and y, denoted by d(x, y), is ||x � y||. We denote
by B(x, ✏) the ball of center x and of radius ✏ which is the set of points are distance at most ✏ from x.

2.1 Convex sets.

A set X is convex if for any pair x, y of points of X and for every 0  �  1 the point z = �x+ (1� �)y
is in X . Differently, a set X is convex if the segment between every pair of points of X is contained in
the set X .

Lemma 1. A set X is convex if and only if any convex combination of a finite number of points of X is in X .

Let X be a set of points. The convex hull of X is the set of points which are convex combinations of
a finite number of points of X . The convex hull of X is denoted by Conv(X). Let us first show that the
convex hull of X is convex.

Lemma 2. Let X be a set of points of Rn

. The set Conv(X) is convex.

Lemma 3. The intersection of any collection (not necessarily finite) of convex sets is convex.

For any X ✓ Rn

, the set Conv(X) is the intersection of all convex sets that contain X .

In particular, it means that the convex hull of X is the smallest convex set containing X . An extreme

point of a convex set X is any point x 2 X which is not a convex combination of other points in X . (we
will see a bit later several other ways to define extremal points).

Exercise 1. Give an example of convex set which is not the convex hull of its extreme points.
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2.2 Convex functions.

A (global) maximizer for an optimization problem ⇧ is a feasible point x 2 F such that for all y 2 F , we
have ||f(x)|| � ||f(y)|| (notations are chosen accordingly to standard notations given at lecture 1). A
local maximizer is a feasible point x for which there exists ✏ > 0 such that for every y in B(x, ✏) \ F , we
have ||f(x)|| � ||f(y)||.

Similarly (global) minimizer for an optimization problem ⇧ is a feasible point x 2 F such that for all
y 2 F , we have ||f(x)||  ||f(y)||. A local maximizer is a feasible point x for which there exists ✏ > 0 such
that for every y in B(x, ✏) \ F , we have ||f(x)||  ||f(y)||.

The epigraph of a function f : F �! R is

Epi(f) = {(x, y) 2 F ⇥ R such that y � f(x)}.

Equivalently, the epigraph is the set of points which lie above the function f . Note that the epigraph is
a set of a set of points of a (d + 1)-dimensional space if F lies in Rd. Let F be a convex set. A function
f : F �! R is convex if the epigraph of f is convex. Equivalently, a function f is convex if for every
x, y 2 F and for every 0  �  1 we have:

f(�x+ (1� �)y)  �f(x) + (1� �)f(y).

A function f is concave if (�f) is convex. Equivalently

f(�x+ (1� �)y) � �f(x) + (1� �)f(y).

Exercise 2. 1. Show that the sum of convex functions is convex.

2. Does it hold for the product of convex functions? For the multiplication by a scalar?

3. Let c 2 Rn

and ↵ 2 R. Show that f(x) = cTx+ ↵ is convex and concave.

Sketch of solution. (1) Let f, g be two convex functions. We have f(�x+ (1� �)y)  �f(x) + (1� �)f(y)
and g(�x + (1 � �)y)  �g(x) + (1 � �)g(y). So we also have: (f + g)(�x + (1 � �)y)  �(f + g)(x) +
(1� �)(f + g)(y).
(2) For the multiplication by a non-negative scalar yes. What happens if we multiply by a negative
scalar? The functions f(x) = x and g(x) = x2 are convex (why), what about their product?
(3) It is a linear function so it is both convex and concave. (prove it !)

Theorem 4. Let D be a convex set. Let f : D �! R be a convex function. If x is a local minimizer of f , then x
is also a global minimizer of f .

Proof. Assume by contradiction that there exists a local minimizer x that is not a global minimizer. And
let x⇤ be such that f(x) > f(x⇤

). By assumption, there exists ✏ > 0 such that, for every y 2 D \ B(x, ✏),
we have ||f(y)|| � ||f(x)|| since x is a local minimizer. The set S = {�x+(1��)x⇤,�  1} is a segment.
Since D is convex, the segment S is in D. Moreover, there exists �0 such that if �  �0, we have (why?)

||�x+ (1� �)x⇤ � x||  ✏

So in particular, if �  �0, we have (�x+ (1� �)x⇤
) 2 B(x, ✏). Since f is convex we have:

f(�x+ (1� �)x⇤
)  �f(x) + (1� �)f(x⇤

) < f(x)

a contradiction with the local minimality of x.

For the same reason we have:

Corollary 5. Let D be a convex set. Let f : D �! R be a concave function. If x is a local maximizer of f , then

x is also a global maximizer. minimizer of f .

Exercise 3. Adapt the proof of Theorem 4 for proving the Corollary 5.

So, given an optimization problem with a linear objective function and a convex feasible region
F , we just have to look for local maximizers in order to find global maximizers (when the objective
function is concave). The simplex algorithm, for instancce, looks for local maximizers. Indeed it is
usually much more simpler to find a local maximizer (which can often be done greedily) instead of
a global maximizer (which implies a much deeper understanding of the underlying structure of the
problem): a local property is always simpler to catch than a global property.

2

the equality holds



3 Polyhedra and polytopes

Definition 1. A hyperplane of Rn

is a set of the form {x such that aTx = b} for some a, b 2 Rn

where a is a

non-zero vector.

A half-space of Rn

is a set of the form {x such that aTx  b} for some a, b 2 Rn

where a is a non-zero vector.

In the following, we will often use the word constraint in place of half-space when we consider the
sets as feasible regions of a linear program. A hyperplane is a set satisfying one linear equation (recall
that one linear equation creates one “constraint” and then the dimension of the affine space reaching
this equality is (n � 1)). A half-space is the part of the space below or above a hyperplane. Note that
we have seen before that constraints of a LP define half-spaces. The vector a is called a vector normal

to the hyperplane. Indeed if we consider the “canonical” basis of Rn with the classical scalar product
on it, the line defined by the vector a is the set of vectors of the space normal to all the vectors of the
hyperplane aTx = 0 (recall that the classical scalar product of x and y is xT y).

Definition 2. A polyhedron is an intersection of finitely many half-spaces.

Computationally, we need this finite number of halfspaces. Indeed, if there is a finite number of
constraints, we can easily represent the halfspaces. If the number of constraints becomes infinite, we
have to be clever when we represent the problem...

Observation 6. A hyperplane is a polyhedron.

Proof. Let H be a hyperplane. Then H = {x/aTx = b} for some pair a, b where a is non empty. So
H = {x/aTx � b} \ {x/aTx  b}

It means that we can “squeeze” polyhedron of Rn in spaces of smaller dimension (topologically, the
interior of a polyhedron can be empty).

Lemma 7. • A hyperplane is a convex set.

• A polyhedron is a convex set.

So the feasible region of a LP, which is a polyhedron, is a convex set. Moreover the objective function
of a LP is a linear function which is both a convex and a concave function. So if we find a local
minimizer or a global minimizer of the objective function, we know that it is a global minimizer or
a global minimizer according to Theorem 4 and Corollary 5.

A polytope is a set which is the convex hull of finitely many points. i.e. it is a set of the form conv(X)

where X is finite. The extreme points of a polytope are sometimes called vertices. We denote by V (P )

the set of vertices of P .

Exercise 4. Prove that if P is a polytope, then P = Conv(V (P )).

Note that ”finiteness” of X is important. Otherwise we could get ”smooth” regions which cannot be
input to a computer with a finite number of linear constraints, e.g. a closed circle is the convex hull of
its extreme points (the points on the boundary). Note that it in particular ensures that every convex set
is not a polyhedron.

A set X is bounded if there exists a constant M such that ||x||  M for every x 2 X .

Theorem 8 (Weyl-Minkowski). P is a polytope if and only if it is a bounded polyhedron.

Even if it seems visually obvious, the proof of Theorem 8 requires careful work to prove rigorously.
In particular, it says that every polytope is indeed the solution space of some system of inequalities Ax 
b (we already mentioned it in Lecture 1). Hence we can view a polytope as having two descriptions:
one given by its vertices, and one given by the system of constraints Ax  b. In the following we will
juggle with both concepts.
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4 Faces and facets

4.1 Faces and vertices

Let P be a polyhedron. Let c be a nonzero vector such that � = max

x2P

cTx is finite. We then call

H = {x such that cTx = �}

a supporting hyperplane of P. Roughly speaking, a supporting hyperplane is just the hyperplane normal
to the vector c that is maximized in the direction of c (in such a way it nevertheless intersects P ). A
face of a polyhedron P is any set of the form P \H where H is a supporting hyperplane. Informally, a
face is a subset of points of the polyhedron which can have the same behavior according to an objective
function (which is just a direction of the space). By convention, the whole polyhedron P is also a face.
We also often consider that the empty set is a face. Note that each face is again a polyhedron. (Why?
Hint: show that a face satisfies all the constraints of P plus some new constraints.)

Theorem 9. A set F is a face of P if and only if

(i) F is a nonempty subset of P .

(ii) F = {x 2 P such that A0x = b0} where A0x  b0 is a subsystem of Ax  b.

Note that by definition, for any face F there is a linear objective function cTx such that the vectors
in F are precisely the optimal solutions for the problem max

x2P

cTx.
Any face of P is obtained by turning some subset of the inequalities into equalities. (NB It is easier

to show one direction of the theorem: if F satisfies (i,ii) then it is a face.)
The dimension dim(P ) of a polyhedron P is the maximum number of affinely independent points

in P minus 1. A d-dimensional face of a polyhedron P is a face of the polyhedron of dimension d (well-
defined since the face is a polyhedron). The 0-dimensionnal faces are the extremal points of the polyhe-
dron (also called vertices), the 1-dimensionnal faces are called the edges. Given a polytope of dimension
k, the faces of dimension (k � 1) are called facets of the polytope P .

Exercise 5. List the faces of a 3-dimensional cube.

Sketch of solution. There is 1 face of dimension 3: the cube itself. There are 6 faces of dimension 2 which
are the facets (usually called faces in the common language) of the cube. Then there are 12 edges and
there are 8 vertices. So the number of faces is 1 + 6 + 12 + 8 = 27. Give a supporting hyperplane for
each of these faces...

Exercise 6. Let P = {x 2 Rn

such that x
i

� 0 for i = 1, . . . , n}. For every k, how many faces of dimension k
does P have?

A face is called a minimal face if it does not strictly contain another face. In most examples, the
vertices are minimal faces (consider for instance the faces of the cube). There are however polyhedra
for which the minimal faces are not vertices (these counter-examples cannot be polytopes, why?). For
instance P = {(x1, x2) 2 R2

: x1  0}. The only face of this polyhedron (apart from itself) is the line
x1 = 0.

There exists a characterization of minimal faces similar to the characterization of Theorem 9.

Theorem 10. A set F is a minimal face of P if and only if

(i) F is a nonempty subset of P .

(ii) F = {x such that A0x = b0} where A0x  b0 is a subsystem of Ax  b.

Note that we do not answer anymore x to be in P , which makes a huge difference. In other words,
if we find a subsystem such that A0x = b automatically implies x 2 P , then all the solutions of this
subsystem form a minimal face of P . When F has dimension 0, it contains a single point which is a
vertex.

Let x be an optimal solution to a given linear program. A constraint is binding (or active or tight) at
x if it is satisfied with equality at x. It morally means that we cannot “push” anymore in the direction
of the constraint without leaving the polyhedron (and then violating the constraint). Stated differently,
a constraint ctx  b (or ctx = b) is tight for a solution x⇤ if ctx⇤

= b. In other words, it means that x⇤ is
in the hyperplane defined by ctx = b.
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Corollary 11. If v is a vertex of a polyhedron P , then there is some linearly independent system of equalities

A0x = b0 which is a subsystem of Ax = b, for which v is the unique solution.

Note moreover that we precisely know the size of this system: it has size n.

Vertices and solutions of a LP

Exercise 7. Consider the linear programming problem of minimizing ctx over a non-empty, polyhedron P .

Suppose moreover that there exists an optimal solution with bounded value. Then, there exists an optimal solution

which is an extreme point of P .

4.2 Basic feasible solutions

4.3 Basic and nonbasic variables

Let P be a polyhedron with (i) inequality constraints and (ii) equality constraints. Let us assume that
the number of variables (ie the dimension of the space) is n and that the number of variables is m.

A constraint ctx  b (or ctx = b) is tight for a solution y if cty = b. In other words, it means that y is
in the hyperplane defined by ctx = b.

Definition 3. Let P be a polyhedron defined by inequality or equality constraints, and let y 2 Rn

. The vector y
is a basic solution if:

• All equality constraints are tight;

• Among the constraints that are tight at y, n of them are linearly independent.

If y 2 P and y is a basic feasible solution (BFS), then we say that y is a basic feasible solution.

Similarly, the second condition can be rephrased as follows: the submatrix of the constraint matrix
induced by the set of tight constraint is a matrix of rank ` (where ` = min(n,m) with n the number of
variables and m the number of constraints).

If more than n constraints are active at a point y, then x is said to be degenete. Degenerate basic
feasible solutions might lead to complication when applying the simplex algorithm. For now, we as-
sume that all basic feasible solutions in P are non-degenerate. (We will address issues that arise from
degenerate solutions in the next lecture.)

4.4 Equivalent definitions of vertices

Equivalent definition of vertices. So finally we have seen three alternative definitions of vertex of

P = {x 2 Rn

: Ax  b}

• z 2 P is a extreme point if and only if it does not lie on a line segment [x, y] where x, y 2 P (i.e. it
is not a convex combination of points of P ).

• z 2 P is a basic feasible solution if and only if rank(A
z

) = n (where n is the number of columns of
A) where A

z

is the submatrix of A consisting of the rows a
i

for which aT
i

z = b
i

i.e. all of the tight
rows of the system Ax  b for the vector z.

• z 2 P is a vertex if and only if there is a (objective) vector c 2 Rn such that z is the unique optimal
solution to max{cTx : x 2 P}.

In the following we will use one or another of these formulations depending on the property we want
to exhibit.

Exercise 8. Let P be a polyhedron. The following are equivalent:

• x⇤
is a vertex;

• x⇤
is an extreme point;

• x⇤
is a basic feasible solution.
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5 Extended formulations

A constraint of a polyhedron is useless if deleting this constraint changes the polyhedron. The com-
plexity of a polyhedron is related to its number of non-useless constraints. The more such constraints
we have, the longer the Simplex algorithm (that follows constraints of the polyhedron) is. A branch of
optimization is devoted to see if we can decrease the number of constraints of a polyhedron.

In particular, one may ask the following counter-intuitive question: by increasing the dimension of

the space (by a small amount), is it possible to drastically decrease the number of constraints? Slightly more
formally, assume that we have an exponential number of constraints in terms of the number of variables.
Is it possible to decrease the number of constraints by increasing (by a polynomial factor) the number
of variables?

Even more surprising, the answer to this question is YES. The rest of this subsection is devoted to
show it on an example.

Lift of polytopes A polytope P is a lift of a polytope Q if P is the image of Q under an affine projection

⇡. In other words, a vector (x1, . . . , xk

) is in the polytope P if and only if there exists a vector of the
form (x1, . . . , xk

, y1, . . . , y`) in Q.
Lifts are an important tool in combinatorial optimization since, if we can optimize a (linear) function

on the polytope Q that depends only of the k first coordinate, then we can perform the same optimiza-
tion on P . Indeed, we can effiently find an optimal solution on Q and then restrict this solution to the k
first coordinate in order to obtain a solution for P . Conversly, if we want to maximize a linear function
on P , then we can optimize the same linear function on Q and then obtain a solution on P . In other
words:

max

x2P

wtx = max

y2Q

wty where w = (w, 0, 0, . . . , 0)

We then say that Q is an extended formulation of P .
What is the interest of lifts and extended formulation? If we can find a higher dimension definition of

our polytope that is simpler than the definition in the original polytope, then we may want to solve our
problem on this higher dimensional polytope than in the original one and then obtain a more efficient
algorithm. But does such a formulation exist? In general it does not necessarily exist, but it might exist.
Let us prove the existence of (compact) extended formulations on several examples.

Example: the cross polytope. The cross polytope is the polytope defined as follows:

C
d

= {x such that kxk1 = 1} = {x 2 Rd such that ± x1 ± x2 . . .± x
d

 1}

Exercise 9. Show that this polytope is defined by 2

d

contraints. In other words, no constraints is useless. And

then the number of facets of C
d

is exponential.

But you can remark that if we consider the polytope Q
d

defined as:

Q
d

= {(x, y) 2 R2d such that
X

i

y
i

= 1, and � y
i

 x
i

 y
i

and y
i

� 0}

then a well-chosen of Q
d

is exactly C
d

. It will shown during the “TD”. So C
d

has an extended
formulation with the extended formulation whose number of faces is exponentially smaller.
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