
Optimization and Approximation ENS Lyon

Lecture 8
Lecturer: Alantha Newman November 15, 2016

1 Using Linear Programs for Approximation Algorithms

Given a discrete optimization problem (e.g. minimum vertex cover, minimum set cover), an approxima-
tion algorithm returns an integer solution whose value is at most α times that of an optimal solution,
where α ≥ 1. (For a maximization problem (e.g. maximum clique, maximum independent set), an α-
approximation algorithm returns a solution whose value is at least α times that of an optimal solution,
where α ≤ 1.) A general framework to design an approximation algorithm for a particular problem using
linear programming can be described as follows:

a. Formulate the problem as an integer linear program.

b. Relax the integrality constraints and solve the resulting linear program in polynomial time.

c. Round the fractional solution to obtain a feasible integral solution.

d. Analyze the quality of this integral solution compared to the optimal fractional solution.

Let us consider the minimum vertex cover problem. Given a graph G = (V,E), the goal is to find
a minimum cardinality subset S ⊂ V such that for all ij ∈ E, at least one vertex from the pair (i, j)
belongs to the set S. We apply the above framework to this problem.

a. Formulate the following integer program for the vertex cover problem.

min
∑
i∈V

xi

subject to: xi + xj ≥ 1, for all ij ∈ E,
xi ∈ {0, 1}. (IPV C)

b. Relax the integrality constraints to obtain a linear program.

min
∑
i∈V

xi

subject to: xi + xj ≥ 1, for all ij ∈ E,
0 ≤ xi ≤ 1. (PV C)

c. Let x∗ denote an optimal solution for (PV C). Let S = {i ∈ V | x∗i ≥ 1
2}. Note that S is feasible since

for each edge ij ∈ E, the constraints from (PV C) imply that either x∗i or x∗j (or both) have value at
least 1

2 .

d. How large can |S| be? Each vertex i ∈ V for which x∗i <
1
2 contributes zero to |S|, and each vertex

for which x∗i ≥ 1
2 contributes one to |S|. So |S| ≤ 2 ·

∑
i∈V x

∗
i . So the size of S is no more than twice

that of an optimal vertex cover.

This approximation algorithm is an example of deterministic rounding. While the rounding step
here is quite straightforward, there are many other, more sophisticated, types of rounding procedures.
In this and later lectures, we will see several examples of randomized rounding as well as more involved
deterministic rounding schemes based on extreme point structure. (We give a glimpse of how extreme
point structure can be exploited in Section 7.) In a later lecture, we will also see how to use linear
programs to obtain combinatorial algorithms via the primal-dual method.

1

1.1 Integrality Gap

A key notion related to accessing the quality of a linear programming relaxation is the concept of an
integrality gap. Given a set I of instances for a minimization problem, the integrality gap is defined as:

sup
I∈I

OPT (I)

OPTf (I)
.

For a maximization problem, it is defined as:

inf
I∈I

OPT (I)

OPTf (I)
.

The integrality gap establishes a limit on the usefulness of a linear programming relaxation. Specifically, if
our approximation algorithm is solely based on a linear program, then we cannot obtain an approximation
ratio better than the integrality gap of this linear program. In the case of vertex cover, we can see that
the simple deterministic rounding procedure is the best possible for the relaxation (PV C), since the
integrality gap of this linear program is 2.

Theorem 1. The integrality gap of (PV C) is at least 2− 2
n .

Proof. Consider the complete graph Kn on n vertices. If we set xi = 1
2 for all i ∈ V , then the value of

OPTf is n
2 . However, the size of a minimum vertex cover in Kn is n− 1. Thus, the integrality gap is at

least n−1
n/2 = 2− 2

n .

Finally, to complete our analysis of the simple rounding algorithm for vertex cover, we give an example
that illustrates that the analysis of the approximation ratio is tight. If we consider the complete bipartite
graph Kn,n, assigning each xi = 1

2 results in a solution that is optimal for (PV C) and whose value equals
the value of an optimal integral solution. However, our rounding algorithm will place all of the vertices
in the vertex cover, resulting in a set whose size is twice as large as that of an optimal solution.

2 Hitting Set Problems

Many of the discrete optimization problems that we want to (approximately) solve can be viewed as
hitting set problems. For example, vertex cover falls into this category. Let U = {e1, . . . , en} denote a
universe of n elements, and let T = {T1, T2, . . . , Tm} denote a family of m sets such that Tj ⊆ U for all
j = 1, 2, . . . ,m. Each element in U is equipped with a cost function c : U → R

+. The goal is to find
a subset A ⊆ U with minimum cost c(A) such that Tj ∩ A 6= ∅ for all j = 1, 2, . . . ,m. The hitting set
problem can be modeled with the following linear program.

min

m∑
i=1

c(ei)xei

subject to:
∑
ei∈Tj

xei ≥ 1, for all sets Tj ,

xei ≥ 0. (PHS)

Suppose that each set Tj has size at most k, i.e. |Tj | ≤ k. If we consider the solution set S = {ei ∈
U | xei ≥ 1/k}, then S is a hitting set and the cost of S is at most k times the optimal value of (PHS).
Note that this is a generalization of the 2-approximation algorithm we saw for the vertex cover problem
in Section 1. Many of the problems we will study in this lecture and the next can be viewed as hitting
set problems, e.g. maximum satisfiability, set cover, integer multicommodity flow, shortest s-t-path and
minimum cost Steiner forest.

2

3 Probability Tools for Randomized Rounding

In the randomized rounding method, each variable xi is interpreted as the probability of adding element
i to the solution, i.e. of setting xi → 1 in an integral solution. We consider three examples of approxi-
mation algorithms based on this technique and we require some basic probabilistic tools to analyze these
algorithms.

(Markov Inequality) If X is a random variable taking on nonnegative values, then:

Pr[X ≥ a] ≤ E[X]

a
for a > 0.

(Chernoff Bound) Let X1, X2, . . . , Xn be n independent 0-1 random variables, not necessarily identi-
cally distributed. Define X =

∑n
i=1Xi and µ = E[X]. Then for an upper limit U such that U ≥ µ and

a small positive constant δ > 0:

Pr[X ≥ (1 + δ)U] < e−
Uδ2

3 .

4 Maximum Satisfiability

In the maximum satisfiability problem, we are given a formula in conjunctive normal form and the goal
is to find a boolean assignment for the variables that satisfies the maximum number of clauses.

Input: A formula F on n variables, {x1, x2, . . . , xn}, and m clauses, {C1, . . . , Cm}. Each clause
Cj has a nonnegative weight wj and consists of some subset of positive and negative variables (a.k.a.
literals). For example, F = (x1 ∨ x̄2)∧ (x3)∧ (x1 ∨ x2 ∨ x̄3)∧ (We assume that each clause contains
only one copy of each variable.)

Output: An assignment xi ∈ {0, 1} for each variable maximizing the total weight of the satisfied
clauses.

The maximum satisfiability problem can be viewed as a hitting set problem. We can construct a
set system whose sets correspond to the clauses in F as well as pairs of literals {xi, x̄i}. A satisfying
assignment corresponds to one in which at least one literal from each of these sets is included in the hitting
set. We note that the maximum satisfiability problem is NP-hard since it generalizes the decision problem
3-SAT: If m is the maximum number of clauses that can be satisifed, then the formula is satisfiable. If
each clause contains exactly two literals, then this problem is known as MAX-2-SAT and is NP-hard
(even though the decision problem has an efficient algorithm). We now consider a simple randomized
algorithm for the maximum satisfiability problem.

Algorithm 1

For i = 1 to n:

Set each variable xi → 1 with probability 1
2 .

The expected value of the assignment output by the algorithm is:

E[W] =

m∑
j=1

wj · Pr[Cj is satisfied].

3

Lemma 2. If the clause Ci has size k (i.e. k variables), then:

Pr[Cj is satisfied] = wj(1−
1

2k
).

Proof. Pr[Cj is not satisfied] = 1
2k

. So Pr[Cj is satisfied] = 1− 1
2k

.

If all clauses have size ≥ 2, Algorithm 1 has an approximation guarantee of 3
4 . But can we achieve an

approximation ratio of 3
4 when there are also unit clauses? Algorithm 1 has good performance when

the clause lengths are long. We now consider another algorithm that performs well when the clauses are
short and show that combining these two algorithms yields a 3

4 -approximation algorithm.

4.1 LP Relaxation for Maximum Satisfiability

For each clause Cj , we let S+
j denote the positive variables and S−j denote the negated variables. The

following integer program exactly models (i.e. is equivalent to) the maximum satisfiability problem.

max

m∑
j=1

wjzj

subject to:
∑
i∈S+

j

yi +
∑
i∈S−j

(1− yi) ≥ zj , for j = 1, 2, . . . ,m,

yi, zj ∈ {0, 1}.

We consider the corresponding linear programming relaxation. Now the variable zj denotes the fraction
of clause Cj that is satisfied and yi is the fractional truth value of variable xi.

max

m∑
j=1

wjzj

subject to:
∑
i∈S+

j

yi +
∑
i∈S−j

(1− yi) ≥ zj , for j = 1, 2, . . . ,m,

0 ≤ yi ≤ 1,

0 ≤ zj ≤ 1. (Pmax−sat)

Algorithm 2:

Find an optimal solution (y∗, z∗) for (Pmax−sat).
For i = 1 to n:

Set each variable xi → 1 with probability y∗i .

To analyze the performance of Algorithm 2, we need some useful inequalities.

Fact 3. [Arithmetic-geometric mean inequality] For any nonnegative a1, . . . , ak,(
k∏
i=1

ai

) 1
k

≤ 1

k

k∑
i=1

ai.

4

Fact 4. If a function f(x) is concave on the interval [0, 1] (that is, f ′′(x) ≤ 0 on [0, 1]), and f(0) = a
and f(1) = b+ a, then f(x) ≥ bx+ a for x ∈ [0, 1].

Theorem 5. Algorithm 2 is a (1− 1
e)-approximation for maximum satisfiability.

Proof. What is the probability that clause Cj is satisfied by the assignment given by Algorithm 2?
Let `j denote the length of clause Cj .

Pr[Cj is not satisfied] =
∏
i∈S+

j

(1− y∗i)
∏
i∈S−j

y∗i

≤

 1

`j

∑
i∈S+

j

(1− y∗i) +
∑
i∈S−j

y∗i

`j

(1)

=

1 +
1

`j

−`j +
∑
i∈S+

j

(1− y∗i) +
∑
i∈S−j

y∗i

`j

=

1− 1

`j

∑
i∈S+

j

y∗i +
∑
i∈S−j

(1− y∗i)

`j

≤
[
1− 1

`j
z∗j

]`j
.

Line (1) follows from Fact 3. Thus, we have:

Pr[Cj is not satisfied] ≤
[
1− 1

`j
z∗j

]`j
.

This implies:

Pr[Cj is satisfied] ≥ 1−
[
1− 1

`j
z∗j

]`j
≥

[
1−

(
1− 1

`j

)`j]
z∗j . (2)

Line (2) follows from Fact 4. So we can compute the expected value of the solution:

E[W] =

m∑
j=1

wj · Pr[Cj is satisfied]

≥
m∑
j=1

wj · z∗j

[
1−

(
1− 1

`j

)`j]

≥ min
k≥1

[
1−

(
1− 1

k

)k] m∑
j=1

wj · z∗j

≥ min
k≥1

[
1−

(
1− 1

k

)k]
·OPT.

5

Using the fact that 1 + x ≤ ex for all x, we have:

min
k≥1

[
1−

(
1− 1

k

)k]
≥

(
1− 1

e

)
,

which implies that E[W] ≥ (1− 1
e) ·OPT .

Now we combine both algorithms. Namely, we run both algorithms and output the assignment that
satisfies the most clauses. To analyze this, we consider the expected value of an assignment if we run
each algorithm with probability 1

2 . (Note that we can run Algorithm 1 with probability α ≥ 0 and
Algorithm 2 with probability β ≥ 0 as long as α + β = 1.) Let W1 and W2 denote the outputs of
Algorithm 1 and Algorithm 2, respectively.

E [max{W1,W2}] ≥ E

[
W1

2
+
W2

2

]
= E

[
W1

2

]
+E

[
W2

2

]
≥

m∑
j=1

wj · z∗j

[
1

2

(
1−

(
1− 1

`j

)`j)
+

1

2

(
1− 1

2`j

)]
.

Proving the following claim proves that the best of the two algorithms is a 3
4 -approximation algorithm.

Claim 6. [
1

2

(
1−

(
1− 1

`j

)`j)
+

1

2

(
1− 1

2`j

)]
≥ 3

4
.

Proof. Note that `j is always an integer with value at least one. For `j = 1, we can see that the claim
is true. Similarly for `j = 2. For `j ≥ 3, the value is actually at least .753.

Remark: Finally, we note that there is a randomized algorithm achieving an approximation ratio of
3
4 for the maximum satisfiability problem that does not use a linear program [PS11]. There is also a
deterministic rounding algorithm that achieves an approximation guarantee of 3

4 and does use a linear
program [VZ11]. However, it is not known whether or not there is a 3

4 -approximation algorithm that is
both combinatorial and deterministic.

5 Set Cover

We now look at another algorithm based on randomized rounding of a solution to a linear program. In
the set cover problem we are given a universe of elements and a family of sets on these elements. The
goal is to find a minimum cardinality (or cost) collection of sets such that each element occurs in at least
one of the chosen sets.

Input: A universe of n elements, U = {e1, e2, . . . , en}, and a family of m sets, T = {T1, T2, . . . , Tm},
such that Tj ⊆ U for all j = 1, 2, . . . ,m. There is a cost function c : T → R

+ indicated by cj = c(Tj).
Output: A minimum cost subset of S ⊆ T such that for each ei ∈ U , there is some set Tj ∈ S such

that ei ∈ Tj . The cost of S is indicated by c(S) =
∑
Tj∈S c(Tj).

The set cover problem can be viewed as a hitting set problem, since for each element, there is an
associated collection of sets and we must choose at least one of these sets. We can model this problem
with the following integer program. Let yj ∈ {0, 1} denote whether or not set Tj is included in the set

6

cover

min
∑
Tj∈T

cjyj

subject to:
∑
j:e∈Tj

yj ≥ 1, for all e ∈ U

yj ∈ {0, 1}.

Now let us consider the linear programming relaxation in which yj now denotes the fractional amount
of set Tj included in the optimal fractional solution. We can assume that yj ≤ 1 since otherwise we can
show the solution is not a minimum cost solution.

min
∑
Tj∈T

cjyj

subject to:
∑
j:e∈Tj

yj ≥ 1, for all e ∈ U

yj ≥ 0. (Pset−cover)

If each element is in at most f sets, then S = {Tj | yj ≥ 1
f } is a feasible set cover and choosing this set

cover is f -approximation algorithm.

5.1 Randomized Rounding for Set Cover

We consider the following rounding algorithm.

Randomized-Rounding Set Cover 1

Find an optimal solution (y∗) for (Pset−cover).
For j = 1 to m:

Include each set Tj in the solution set S with probability y∗j .

The cost of this solution is exactly
∑
Tj∈T cjyj . However, this solution may not be feasible. In other

words, there may be some elements in U that are covered by any set in S. However, we can prove that
each element has a constant probability of being covered by some set.

Lemma 7. Randomized-Rounding Set Cover 1 covers each element with probability at least (1− 1
e).

Proof. Consider element ei which belongs to k sets, each of which is selected by the algorithm with
probability p1, p2, . . . , pk. By the constraints from (Pset−cover), we have:

k∑
j=1

pj ≥ 1.

Next, we have:

Pr[ei is not covered] =

k∏
j=1

(1− pj)

≤
k∏
j=1

e−pj = e−
∑
pj ≤ 1

e
.

So, Pr[ei is covered] ≥ 1− 1
e .

7

Now we modify our algorithm: we include each set with probability pj and repeat this 2 log n times
(we can abort if set Tj is chosen).

Randomized-Rounding Set Cover 2

Find an optimal solution (y∗) for (Pset−cover).
For j = 1 to m:

Repeat 2 log n times: Include each set Tj in the solution set S with probability y∗j .

Lemma 8. Randomized-Rounding Set Cover 2 covers all elements with probability at least 1− 1
n .

Proof.

Pr[ei is not covered] =
∏

j:ei∈Tj

(1− y∗j)2 logn

≤
∏

j:ei∈Tj

e−y
∗
j 2 logn

= e
−2 logn

∑
j:ei∈Tj

y∗j

≤
(

1

e

)2 logn

=
1

n2
.

By union bound, we can show:

Pr[exists ei that is not covered] ≤ 1

n2
· n =

1

n
. (Bad event I)

So we have:

Pr[all elements are covered] ≥ 1− 1

n
.

We are not done, because there is some probability that even if all elements are covered, the cost
exceeds the expected cost. Let OPTf =

∑
Tj∈T cjy

∗
j . By Markov’s inequality, we have:

Pr[c(S) > 4(OPTf · 2 log n)] ≤ 1

4
. (Bad event II)

By union bound the probability that either bad events I or II can occur is at most 1
4 + 1

n < 1
3 for

sufficiently large n. Thus, with a constant probability, we find a solution that is (i) a valid set cover
and (ii) costs at most 8 log n · OPT . We can conclude that Randomized-Rounding Set Cover 2
is a O(log n)-approximation algorithm. There are instances for the set cover problem exhibiting an
integrality gap of Ω(log n).

6 Integer Multicommodity Flows

Given a graph G = (V,E), and k pairs (si, ti) ∈ V for i = 1, 2, . . . , k, the goal of the integer multicom-
modity flow problem is to find a simple path from sit to ti for all i = 1, 2, . . . , k so as to minimize the
maximum number of paths using any particular edge. In other words, the objective is to minimize the
maximum edge congestion.

8

Let Pi denote the set of all simple paths from si to ti for i = 1, 2, . . . , k. For path p, let p also denote
the set of edges in p. Let xp ∈ {0, 1} be a variable indicating whether or not path p is chosen or not.
The total number of paths using an edge e is given by:∑

p:e∈p
xp ≤ C.

Then C is an upper bound on the congestion of edge e. For each (si, ti) pair, we need to choose a path:∑
p∈Pi

xp = 1.

These constraints lead to the following linear programming relaxation.

min C∑
p∈Pi

xp = 1, for all i = 1, . . . , k,

∑
p:e∈p

xp ≤ C, for all e ∈ E,

xp ≥ 0. (P 1
flow)

This linear program may have an exponential number of variables. Consider another linear programming
relaxation with a polynomial number of variables. In this relaxation, xie represents the number of paths
using edge e.

min C∑
e∈δ+(v)

xie =
∑

e∈δ−(v)

xie, for all i = 1, . . . , k and v 6= si, ti,

∑
e∈δ−(si)

xie =
∑

e∈δ+(ti)

xie = 1, for all i = 1, . . . , k,

k∑
i=1

xie ≤ C, for all e ∈ E,

xie ≥ 0. (P 2
flow)

It can be shown that relaxations (P 1
flow) and (P 2

flow) are equivalent in the sense that an optimal solution
for (P 1

flow) can be converted to an optimal solution for (P 2
flow) and vice versa.

6.1 Randomized Rounding for Multicommodity Flow

We will analyze the following rounding procedure for the multicommodity flow problem.

Randomized-Rounding Multicommodity Flow

Find an optimal solution (C∗,x∗) for (P 1
flow).

For i = 1 to k:

Choose one path p ∈ Pi, such that each p ∈ Pi is chosen with probability xp.

Theorem 9. With high probability, the total number of paths using an edge e is at most O(log n · C).

9

Proof. For each edge e ∈ E, define a random variable Xi
e where:

Xi
e = 1 if si → ti path uses edge e, or

Xi
e = 0 otherwise.

The number of edges using edge e is denoted by the random variable Ye, where

Ye =

k∑
i=1

xie.

Our goal is to show that with high probability, the value of Ye is not much greater than C∗. The
expectation of Ye is at most C∗:

E[Ye] =

k∑
i=1

∑
p∈Pi:
e∈p

x∗p =
∑
p:e∈p

x∗p ≤ C∗.

For a fixed edge e, the random variables {Xi
e} are independent. Thus, we can apply the Chernoff Bound

from Section 3. Let δ = 1 and let U = 12 log n. Then we have:

Pr[Ye ≥ 24 · log n] < e−
12 logn

3 <
1

n4
.

Applying the union bound over all (at most n2) edges, we have:

Pr[Congestion ≥ 24 · log n] = Pr[∃e : Ye > 24 · log n] ≤ 1

n2
.

We conclude that:

Pr[Congestion < 24 · log n] ≥ 1− 1

n2
.

So with high probability, the Randomized-Rounding Multicommodity Flow algorithm will
output a feasible solution with edge congestion no more than O(log n) times the optimal congestion.

7 Extreme Point Structure

Many deterministic rounding algorithms crucially use the extreme point structure of an optimal solution
for a linear program. For example, we can show that an extreme point for the vertex cover linear program
(PV C) is half-integral. That is, each vertex has a value vi ∈ {0, 1/2, 1}. This property can be used to
obtain an algorithm for the vertex cover problem that has an approximation ratio less than 2 for graphs
that can be colored with few colors.

Theorem 10. Given a k-coloring of a graph G, we can find a vertex cover which is at most (2 − 2
k)

times an optimal solution.

Proof. Given an optimal extreme point solution x∗ to (PV C), consider the sets:

V0 = {v | xv = 0}, V 1
2

= {v | xv =
1

2
}, V1 = {v | xv = 1}.

Then there will be no edges between any pair of vertices in V0, or between a vertex in V0 and V 1
2
.

Furthermore, we know that V 1
2

can be colored with k colors, which means that there are k independent

10

sets in V 1
2
. Let I be the independent set of V 1

2
that has the maximum cardinality (or maximum sum of

weights in the weighted case). Rounding xi down for every i ∈ I, and rounding up xi for every i /∈ I,
will yield a feasible solution of cost at most:

2 ·
∑

v∈V 1
2
\I

xv + |V1| ≤ (1− 1

k
) · |V 1

2
|+ |V1|.

The solution x∗ has (optimal) value: ∑
v∈V

x∗v =
1

2
|V 1

2
|+ |V1|.

Thus, our solution is at most (2− 2
k) times the value of an optimal solution.

We will see other, more elaborate, examples of how to use extreme point structure for designing
approximation algorithms in future lectures.

References

[GW94] Michel X. Goemans and David P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7(4):656–666, 1994.

[PS11] Matthias Poloczek and Georg Schnitger. Randomized variants of Johnson’s algorithm for MAX
SAT. In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 656–663. SIAM, 2011.

[RT87] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

[Vaz13] Vijay V. Vazirani. Approximation Algorithms. Springer Science & Business Media, 2013.

[VZ11] Anke Van Zuylen. Simpler 3/4-approximation algorithms for MAX SAT. In International
Workshop on Approximation and Online Algorithms, pages 188–197. Springer, 2011.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge University Press, 2011.

These lecture notes are based on Chapters 1 and 5 of [WS11], Chapter 4 of [Vaz13], lecture notes
by Stéphan Thomassé from previous versions of the same course and lecture notes from a course on
approximation algorithms at EPFL (http://theory.epfl.ch/osven/courses/Approx13). The original
presentations of the algorithms for maximimum satisfiability and integer multicommodity flow can be
found in [GW94] and [RT87], respectively.

11

http://theory.epfl.ch/osven/courses/Approx13

	Using Linear Programs for Approximation Algorithms
	Integrality Gap

	Hitting Set Problems
	Probability Tools for Randomized Rounding
	Maximum Satisfiability
	LP Relaxation for Maximum Satisfiability

	Set Cover
	Randomized Rounding for Set Cover

	Integer Multicommodity Flows
	Randomized Rounding for Multicommodity Flow

	Extreme Point Structure

