TD1 - Modelization and Linear Programming

Indication of hardness: from $\left({ }^{*}\right)$ to $\left({ }^{* * * *)}\right.$.

1 Modelization (again)

Exercise 1 - Computers production (${ }^{*}$)

Pear produces notebook computers and desktop computers. Pearⓒ would like to know how many of each product to produce in order to maximize profit for the quarter. The major constraints are as follows:

1. Each computer (either notebook or desktop) requires a Processing Chip. Due to tightness in the market, the supplier has allocated 10,000 such chips to the company.
2. Each computer requires memory. Memory comes in 8 GB chip sets. A notebook computer has 8GB memory installed (so needs 1 chip set) while a desktop computer has 16 MB (so requires 2 chip sets). Pear® received a great deal on chip sets, so have a stock of 15,000 chip sets to use over the next quarter.
3. Each computer requires assembly time. Due to tight tolerances, a notebook computer takes more time to assemble: 4 minutes versus 3 minutes for a desktop. There are 38,000 minutes of assembly time available in the next quarter.
Given current market conditions, material cost, and our production system, each notebook computer produced generates $\$ 750$ profit, and each desktop produces $\$ 1000$ profit.
(a) Formulate the problem as a Linear Program.
(b) Solve it geometrically and with the Simplex Algorithm.

Exercise 2 - The world is (still) linear... (***)
(a) We want to maximize the following fraction $\frac{3+2 x_{1}+3 x_{2}+x_{3}}{1+3 x_{1}+x_{2}+4 x_{3}}$ subject to the constraints $5 x_{1}+x_{2}+6 x_{3} \leq 10$ and $x_{1}+2 x_{2}+x_{3} \leq 2$ and non negative x_{i} for every i. Show that this problem can be modeled with the following linear program:

$$
\begin{array}{r}
\max 3 t+2 y_{1}+3 y_{2}+y_{3} \\
\text { subject to } \\
t=1-3 y_{1}-y_{2}-4 y_{3} \\
5 y_{1}+y_{2}+6 y_{3}-10 t \leq 0 \\
y_{1}+2 y_{2}+y_{3} \leq 0 \\
t, y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

Hint: $t=\frac{1}{1+3 x_{1}+x_{2}+4 x_{3}}$.
(b) Explain how you can generalize it to any fraction.

2 Convex sets

Exercise 3-Alternative definition of convext sets. (*)

Prove that: a set X is convex if and only if any convex combination of a finite number of points of X is in X.

Exercise 4 - Applications of the definition (*)

Show that:

- A hyperplane is a convex set.
- A polyhedron is a convex set.
- A cone is a convex set.

Exercise 5 - Convex hull is convex. (*)

Let X be a set of points of \mathbb{R}^{n}. Show that the set $\operatorname{Conv}(X)$ is convex.

Exercise 6 - Convex hull of the extreme points (**)

Prove that if P is a polytope, then $P=\operatorname{Conv}(V(P))$.

Exercise 7-Operations on convex sets. (*)

(a) Show that the intersection of any collection (not necessarily finite) of convex sets is convex. What about the union of convex sets?
(b) Show that for any $X \subseteq \mathbb{R}^{n}$, the set $\operatorname{Conv}(X)$ is the intersection of all convex sets that contain X.

Hint: If x, y are in the intersection, show that the "segment" $[x, y]$ also is. 2) Why it is included in $\operatorname{Conv}(X)$? Since the convex set contains X, why does it contain $\operatorname{Conv}(X)$?

Exercise 8 - Convex functions. (*)

(a) Show that the sum of convex functions is convex.
(b) Is it also true for the product of convex functions? For their multiplication by a scalar?
(c) Let $c \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. Show that $f(x)=c^{T} x+\alpha$ is convex and concave.

3 Polytopes

Exercise 9-Optimal solution and faces. (*)
Prove that any optimal solution of a LP on a polyhedron P has either an infinite optimal value or has its optimal solution on a face F of P (strictly contained in P).

Exercise 10 - Alternative definition of polytope. (**)

(a) Prove that any minimal face of a polytope P is reduced to a single point.
(b) Consider the linear programming problem of minimizing $c^{t} x$ over a non-empty, polytope P. Prove that there exists an optimal solution which is an extreme point of P.

Exercise 11 - An example (*)

Give an example of convex set which is not the convex hull of its extreme points.
Hint: It is not a polytope (why?), thus...
Exercise 12 - Lines and Extreme Points. (**)
We say that a polyhedron P contains a line if there exists a point $x \in P$ and a nonzero vector $d \in \mathbb{R}^{n}$ such that $x+\lambda d \in P$ for all scalars λ.
(a) Prove the following: Let P be a non-empty polyhedron. Show that if P does not contain a line, then P contains an extreme point.
(b) Is the converse also true? Proof or counter-example.

4 Harder exercises on polytopes

Exercise 13 - Extremal points of the unit disk (${ }^{* * *}$)

We want to prove formally that the set of extremal points of the unit disk

$$
C=\left\{\binom{x}{y} \text { such that } x^{2}+y^{2} \leq 1\right\}
$$

is the set of points satisfying $x^{2}+y^{2}=1$.
(a) Let $\binom{x_{0}}{y_{0}}$ be a point satisfying $x_{0}^{2}+y_{0}^{2}=1$. Give an equation of the line tangent to the sphere at point $\binom{x_{0}}{y_{0}}$ as $\alpha x+\beta y=c($ explicit α, β and $c)$.
(b) Maximize $\alpha x+\beta y$ on C. What is the optimal value? Show that $\binom{x_{0}}{y_{0}}$ is the unique point reaching the optimal value.
(c) Let X be a subset of C such that $\binom{x_{0}}{y_{0}} \notin X$. What can you say about the optimal value of the objective function in $\operatorname{Conv}(X)$? Conclude.
(d) Recall why it implies that C is not a polytope.
(e) How can you adapt this proof for higher dimensional spaces?

Hint for (b): We denote by $(u \mid v)=\sum_{i} u_{i} v_{i}$ the scalar product of two vectors u and v. Recall that (Cauchy-Schwarz theorem)

$$
|(u \mid v)| \leq\|u\| \cdot\|v\|
$$

And the equality case happens if and only if $u=\lambda v$ for $\lambda \geq 0$.

Exercise 14 - Extended formulations - The cross polytope (${ }^{* * *)}$

Consider the following polytope:

$$
C_{d}=\left\{x \text { such that }\|x\|_{1}=1\right\}=\left\{x \in \mathbb{R}^{d} \text { such that } \pm x_{1} \pm x_{2} \ldots \pm x_{d} \leq 1\right\}
$$

(a) Represent C_{d} when $d=2$ and $d=3$.
(b) Show that no constraint of the following polyhedron is useless. In other words, prove that none of the constraints $\pm x_{1} \pm x_{2} \ldots \pm x_{d} \leq 1$ can be deleted without modifying the polytope.
What is the number of facets of this polytope?
(c) Find an extended formulation C_{d} with a linear number of constraints.

Hint for (c): How did we transform absolute values into variables in TD1?

5 Simplex algorithm

Exercise 15 - Solve the following LP
(**) Solve the following linear programs using the simplex algorithm:

$$
\begin{aligned}
& \max 6 x_{1}+8 x_{2}+5 x_{3}+9 x_{4} \quad \text { subject to: } \\
& 2 x_{1}+x_{2}+x_{3}+3 x_{4} \leq 5 \\
& x_{1}+3 x_{2}+x_{3}+2 x_{4} \leq 3 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{aligned}
$$

Exercise 16 - Solve the following LP
(**)

$$
\begin{aligned}
& \max 3 x_{1}+3 x_{2}+4 x_{3} \quad \text { subject to: } \\
& x_{1}+x_{2}+2 x_{3} \leq 4 \\
& 2 x_{1}+3 x_{3} \leq 5 \\
& 2 x_{1}+x_{2}+3 x_{3} \leq 7 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{aligned}
$$

Exercise 17 - Solve the following LP (${ }^{* *}$)

$$
\begin{gathered}
\max 2 x_{1}+x_{2} \quad \text { subject to: } \\
2 x_{1}+x_{2} \leq 3 \\
2 x_{1}+x_{2} \leq 1 \\
2 x_{1}+x_{2} \leq 4 \\
2 x_{1}+x_{2} \leq 5 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

