Linear Algebra
 [KOMS119602] - 2022/2023

14.1-Diagonalization

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 15 (December 2022)

Learning objectives

After this lecture, you should be able to:

- verify whether a matrix is orthogonal or not;
- perfom orthogonal diagonalization on a matrix.

Orthogonal matrix

Orthogonal matrix

- The really nice bases of \mathbb{R}^{n} are the orthogonal bases, so a natural question is: which $n \times n$ matrices have an orthogonal basis of eigenvectors?

Orthogonal matrix

A square matrix A is said to be orthogonal if:

$$
A^{-1}=A^{T}
$$

or, equivalently if $A A^{T}=A^{T} A=I$.
Example
The following matrix is orthogonal.

$$
A=\left[\begin{array}{ccc}
\frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\
-\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\
\frac{2}{7} & \frac{6}{7} & -\frac{3}{7}
\end{array}\right]
$$

Task: Prove it!

Example solution

We show that $A A^{T}=I$ (orthogonality property).

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
\frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\
-\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\
\frac{2}{7} & \frac{6}{7} & -\frac{3}{7}
\end{array}\right]\left[\begin{array}{ccc}
\frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\
\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\
\frac{6}{7} & \frac{2}{7} & -\frac{3}{7}
\end{array}\right] \\
& =\frac{1}{49}\left[\begin{array}{ccc}
3 & 2 & 6 \\
-6 & 3 & 2 \\
2 & 6 & -3
\end{array}\right]\left[\begin{array}{ccc}
3 & -6 & 2 \\
2 & 3 & 6 \\
6 & 2 & -3
\end{array}\right] \\
& =\frac{1}{49}\left[\begin{array}{ccc}
49 & 0 & 0 \\
0 & 49 & 0 \\
0 & 0 & 49
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Properties of orthogonal matrix

Let A be an $n \times n$ matrix. The following are equivalent.

1. A is orthogonal.
2. The row vectors of A form an orthonormal set in \mathbb{R}^{n} with the Euclidean inner product.
3. The column vectors of A form an orthonormal set in \mathbb{R}^{n} with the Euclidean inner product.

A set of matrix forms an orthonormal set if the vectors are pairwise orthogonal, and the magnitude of every vector is 1.

Why is orthogonal matrix important?

- They are involved in some of the most important decompositions in numerical Linear Algebra, such as: QR-decomposition, Singular Value Decomposition (SVD), etc.

Exercise: Give another example of importance of orthogonal matrix!

Exercise

Recall the rotation matrix transformation in \mathbb{R}^{2}.

$$
A=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Is matrix A orthogonal?

What about the following matrices?

1. Reflection matrix in \mathbb{R}^{2} and \mathbb{R}^{3} ?
2. Orthogonal projection on \mathbb{R}^{2} and \mathbb{R}^{3} ?
3. Rotation on \mathbb{R}^{3} ?

Exercise (solution for rotation matrix)

$$
\operatorname{det}(A)=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

Hence:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]=A^{T}
$$

So, the rotation matrix in \mathbb{R}^{2} is an orthogonal matrix.

Exercise 1: Reflection operators on \mathbb{R}^{3}

Operator	Illustration	Images of e_{1} and e_{2}	Standard Matrix
Reflection about the x-axis $T(x, y)=(x,-y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,-1) \end{aligned}$	$\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
Reflection about the y-axis $T(x, y)=(-x, y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(-1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,1) \end{aligned}$	$\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
Reflection about the line $y=x$ $T(x, y)=(y, x)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(0,1) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(1,0) \end{aligned}$	$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Exercise 2: Reflection operators on \mathbb{R}^{3}

Operator	Illustration	Images of $\mathbf{e}_{1}, e_{2}, e_{3}$	Standard Matrix
Reflection about the $x y$-plane $T(x, y, z)=(x, y,-z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,-1) \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
Reflection about the $x z$-plane $T(x, y, z)=(x,-y, z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,-1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Reflection about the $y z$-plane $T(x, y, z)=(-x, y, z)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0,0)=(-1,0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathbf{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Exercise 3: Projection operators on \mathbb{R}^{3}

Operator	Illustration	Images of e_{1} and e_{2}	Standard Matrix
Orthogonal projection onto the x-axis $T(x, y)=(x, 0)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(1,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,0) \end{aligned}$	$\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right]$
Orthogonal projection onto the y-axis $T(x, y)=(0, y)$		$\begin{aligned} & T\left(\mathbf{e}_{1}\right)=T(1,0)=(0,0) \\ & T\left(\mathbf{e}_{2}\right)=T(0,1)=(0,1) \end{aligned}$	$\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]$

Exercise 4: Projection operators on \mathbb{R}^{3}

Operator	Illustration	Images of e_{1}, e_{2}, e_{3}	Standard Matrix
Orthogonal projection onto the $x y$-plane $T(x, y, z)=(x, y, 0)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,0) \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
Orthogonal projection onto the $x z$-plane $T(x, y, z)=(x, 0, z)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(1,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,0,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
Orthogonal projection onto the $y z$-plane $T(x, y, z)=(0, y, z)$		$\begin{aligned} & T\left(\mathrm{e}_{1}\right)=T(1,0,0)=(0,0,0) \\ & T\left(\mathrm{e}_{2}\right)=T(0,1,0)=(0,1,0) \\ & T\left(\mathrm{e}_{3}\right)=T(0,0,1)=(0,0,1) \end{aligned}$	$\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Exercise 5: Rotations in \mathbb{R}^{3}

Orthogonal diagonalization

What is orthogonal diagonalization?

Let A and B be square matrices. B is said to be orthogonally similar to A, if there is an orthogonal matrix P, s.t.:

$$
B=P^{T} A P
$$

Remark. Conversely, A is also orthogonally similar to B. Can you explain why?

What is orthogonal diagonalization?

Let A and B be square matrices. B is said to be orthogonally similar to A, if there is an orthogonal matrix P, s.t.:

$$
B=P^{T} A P
$$

Remark. Conversely, A is also orthogonally similar to B. Can you explain why?
Proof. Take $Q=P^{T}$. Then:

$$
Q^{T} B Q=P B P^{T}=A
$$

(because $B=P^{T} A P \Rightarrow P B P^{T}=P\left(P^{T} A P\right) P^{T}=I A I=A$, since $P^{T}=P^{-1}$)

Orthogonal diagonalization

If a square matrix A is orthogonally similar to some diagonal matrix D, i.e.

$$
P^{T} A P=D
$$

then we say that A is orthogonally diagonalizable and that P orthogonally diagonalizes A.

Why do we care about orthogonal diagonalization?

What type of matrix that is diagonalizable?

Lemma

A square matrix is orthogonally diagonalizable if and only if it is symmetric.

Proof.

Algorithm for orthogonally diagonalization

Let A be an $n \times n$ symmetric matrix.

- Step 1. Find a basis for each eigenspace of A.
- Step 2. Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace.
- Step 3. Form the matrix P whose columns are the vectors constructed in Step 2.

Matrix P is a matrix that will orthogonally diagonalize A, i.e.

$$
D=P^{T} A P \text { is a diagonal matrix }
$$

Exercises

Orthogonally diagonalize the following matrices:

- $\begin{aligned} A & =\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1\end{array}\right] \\ \text { - } A & =\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]\end{aligned}$

Solution of exercises

Solution can be found in
https://psu.pb.unizin.org/psumath2201in/chapter/ section-5-2-orthogonal-diagonalization/

