
Intro to Concepts of Computer Science (Lab session 3) N.L.D. Sintiari / P. Koiran

Remarks Today, I let you work on your own. You may discuss about the algorithm or the im-
plementation, but you should write your own code. Try to do as many exercises as you could, then
please send your codes and the analysis to my email ni-luh-dewi.sintiari@ens-lyon.fr before
Tuesday, October 13th, 11.59 pm.

As in the previous session, we assume that we work with a graph G = (V,E) that has n vertices
denoted V := {0, 1, . . . , n− 1}. If the graph is a tree, we will denote it as T = (V,E).

Graph representations

During the last session, we represented a graph G by its list of edges E. There are two other common
representations. First, a graph can be represented by its adjacency matrix. This is a symmetric matrix
A ∈ {0, 1}n×n such that Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. Second representation is the
adjacency list. In this representation, we are given a list L of length n such that L[i] is the list of
neighbors of the vertex i.

Exercise 1.

(a) Write a function edges_to_matrix(n,E) that takes a list of edges E and outputs the adjacency
matrix of the graph G. Similarly, write a function edges_to_list(n,E) that outputs the ad-
jacency list of G. Write functions that do the opposite conversions. Can you tell what the
advantages and drawbacks of each of these representations?

Distances in trees

Suppose that we have a tree T = (V,E) with n vertices. Observe that if (u, v) ∈ V are two vertices,
then there are joined by exactly one path in T . We de�ne the distance d(u, v) between u and v as
the length (number of edges) of this path. We put d(u, u) := 0. The diameter of the tree is then
de�ned as the length of the longest path in T , diam(T ) := maxu,v∈V d(u, v).

Exercise 2.

(a) Write a function is_tree(n,E) that veri�es if a given graph is a tree. To do so, you may use an
algorithm from the previous lab session. (Hint: a tree is a connected graph with n− 1 edges.)

(b) Suppose that T = (V,E) is a tree. Write a function distances(u,E) that, for a given vertex
u ∈ V , outputs a list D of length n such that D[v] is the distance d(u, v). To make the algorithm
e�cient, you may want to create the adjacency list of T and use a recurrence. (Hint: note that
the neighbors of u are at distance 1, their neighbors di�erent than u are at distance 2 and so on.
If you are stuck, read about the Depth-�rst search algorithm and adapt it to this exercise.)

(c) Write a function diameter(E) that �nds the diameter of the tree T . To do so, use the following
algorithm. Take any vertex u ∈ V and �nd a vertex v ∈ V such that d(u, v) is maximal. Then,
repeat the procedure for the vertex v, i.e., �nd a vertex w ∈ V such that d(v, w) is maximal.
It can be proven that d(v, w) is the diameter of T . What is the complexity of the function
diameter(E)?



Laplacian matrices

In this section, we want to �nd out what is the exact number of (labelled) trees on n ≥ 2 vertices.
We recall that a Laplacian matrix of a graph G = (V,E) is a matrix L ∈ Rn×n de�ned as L := D−A,
where A ∈ {0, 1}n×n is the adjacency matrix of G, and D ∈ Rn×n is the degree matrix, i.e., a diagonal
matrix de�ned as Dii = deg(i) for all i ∈ V and Dij = 0 if i 6= j.

Exercise 3.

(a) Write a function laplacian(n,E) that �nds the Laplacian matrix of G.

(b) Write a function count_spanning_trees(n,E) that counts the number of spanning trees of G.
Use the fact that this number is equal to det(M), where M ∈ R(n−1)×(n−1) is the matrix obtained
from the Laplacian of G by removing its �rst column and �rst row.

(c) Write a function clique_laplacian(n) that creates the Laplacian matrix of a complete graph
(clique) on n vertices. Use this function to create a function number_trees(n) that �nds the
number of trees on n vertices. Test it on some values of n. What did you �nd? (Additional
question: can you prove that your result is correct using elementary operations on matrices?)


