
Intro to Concepts of Computer Science (Lab session 2) N.L.D. Sintiari / P. Koiran

Remarks There is a number of Python libraries that are designed to deal with graphs. Some of
them are NetworkX, graph-tool, and igraph. You are free to play with them if you want. (It is quite
possible that NetworkX is already included in your Python distribution.) Nevertheless, in this lab
session we can keep things simple. We will suppose that a graph G = (V,E) has n vertices denoted
V := {0, 1, . . . , n− 1}. As a result, a graph G can be represented as a list of edges, where an edge is
a tuple (u, v) containing two vertices, 0 ≤ u < v ≤ n− 1.

Erd®s�Rényi model

The Erd®s�Rényi model is a simple model of generating a random graph. In this model, we take a
number 0 < p ≤ 1 and we construct a graph with n vertices as follows. For every possible edge (u, v)
we make a random decision: with probability p the edge belongs to the graph, and with probability
1− p it does not belong to the graph. A graph obtained in this way is often denoted G(n, p).

Exercise 1.

(a) Write a function erdos_renyi(n,p) that creates a random graph from the Erd®s�Rényi model
G(n, p). (Hint: you may want to use numpy.random.binomial and itertools.combinations.
For e�ciency, you should use numpy.random.binomial only once.)

(b) Suppose that p := 4/n. How many edges, on average, does this graph have? Test your function
for di�erent values of n. How e�cient it is? Can you use it to quickly construct a random graph
with 5 000 vertices? 10 000? What about 30 000 vertices?

(c) Implement the function sparse_erdos_renyi(n,p) given in Figure 1 (fell free to correct all the
bugs that you �nd). This function also computes a graph from the Erd®s�Rényi model. (Do you
see why?) Test its performance. How large graphs can you compute quickly? Can you explain
the di�erence in e�ciency between the two functions on our examples?

Connected components and spanning trees

In this section, we investigate the Kruskal algorithm. It is a greedy algorithm that is capable of
�nding a spanning tree of minimal weight of a given graph. Nevertheless, we may also use it to �nd
the connected components of a graph. The basic algorithm that we are going to use is presented in
Figure 2. For every vertex it uses two auxiliary data: Representative(v) is a vertex that represents
the connected component of v and Component(v) is a (partial) list of vertices that are in the same
component as the vertex v. At the end of the algorithm, Component

(
Representative(v)

)
is the list

of vertices of the connected component of v.

Exercise 2.

(a) Write a function connected_components(n,E) that implements the algorithm of Figure 2 and
test it. Then, use it on Erd®s�Rényi graphs (as previously, we take p := 4/n). How e�cient is
this function?

(b) Modify the function connected_components(n,E) between the lines denoted by 3 and 4 in such
a way that when the merging operation of line 4 is performed, the smaller component is added
to the bigger one. How does this in�uence the e�ciency of your function?

(c) By taking di�erent values of n, try to �nd out what is the average size (number of vertices) of
the largest connected component of a graph G(n, 4/n).



def a l l_pa i r s (k , n ) :
# Enumerates a l l p o s s i b l e edges o f a graph wi th n v e r t i c e s

m = int (n∗(n−1)/2)
k = int (m − k − 1)
w = math . f l o o r ( (math . s q r t (1+8∗k ) − 1)/2)
t = int ( (w∗∗2 + w) / 2)
u = n − 2 − w
v = n − 1 − k + t
return (u , v )

def sparse_erdos_renyi (n , p ) :
# Computes an Erdos−Renyi graph

E = [ ]
m = int (n∗(n−1)/2)
L = np . random . geometr ic (p , int (2∗n∗n∗p ) )
i = 0
t = L [ 0 ] − 1
while t < m:

E. append ( a l l_pa i r s ( t , n ) )
i += 1
t += L [ i ]

return E

Figure 1: Computing sparse Erd®s�Rényi graphs.

Data: List of edges E of a graph G = (V,E)
Result: List of connected components of G
for v ∈ V do

Representative(v)← v;
Component(v)← [v];

end

for (u, v) ∈ E do1

uaux, vaux ← Representative(u),Representative(v);2

if uaux 6= vaux then3

Component(uaux)← Component(uaux) + Component(vaux);4

for w ∈ Component(vaux) do
Representative(w)← uaux;

end
end

end

Connected_components← [];
for v ∈ V do

if v = Representative(v) then
Connected_components.append

(
Component(v)

)
end

end

Figure 2: Computing connected components.



Exercise 3. We now turn our attention to �nding a minimum spanning tree of a connected graph
using the Kruskal algorithm. To do so we will suppose that an edge of a graph is represented as
(u, v, z), where u, v ∈ V are vertices of a graph and z ∈ Q is the weight of the edge.

(a) Write a function minimum_spanning_tree(n,E) that outputs the minimum spanning tree T of
a graph. To do so, do the following modi�cations to the function connected_components(n,E).
First, sort the edges by their weights, and read them from the lightest to the heaviest (line 1 of
the algorithm). Second, whenever the line 4 is reached, add the edge (u, v) to T . (Hint: you may
want to read https://wiki.python.org/moin/HowTo/Sorting to know how to sort the edges.)

(b) To visualize your results do the following test. Pick n random points from the square [0, 1]×[0, 1].
Then, construct an edge between every pair of points, with the weight equal to the distance of
the two points. Compute a minimum spanning tree and plot the resulting image.


