Tutorial XIV: More on Codes

Homework

1 Constructing good codes

The objective of this problem is to explicitly construct a family of binary linear codes with dimension $k = \Omega(n)$ and minimum distance $d = \Omega(n)$.

- We will define a family of codes with blocklength 2k and dimension k. Recall that we can view the set {0,1}^k as a field F_{2k} (the only thing needed for this problem is that it is a field). More formally, we assume that σ : F₂^k → F_{2k} is a bijection and satisfies the properties σ(0) = 0, σ(x + y) = σ(x) + σ(y) for any x, y ∈ F₂^k and also σ⁻¹(u + v) = σ⁻¹(u) + σ⁻¹(v) for u, v ∈ F_{2k}. For every α ∈ F_{2k} nonzero, let C_α : {0,1}^k → {0,1}^{2k} be defined by C_α(x) = (x, σ⁻¹(α · σ(x))). Here · denotes the multiplication in the field F_{2k}.
 - (a) Show that for any α , C_{α} is a linear code. For $\alpha = 1$ (the unit for the field \mathbb{F}_{2^k}), what is the minimum distance of C_1 ?
 - (b) Show that for $\alpha \neq \beta$, $C_{\alpha} \cap C_{\beta} = \{0\}$.
 - (c) Show that the fraction of codes C_{α} with minimum distance $\leq d-1$ is at most $\frac{\sum_{i=1}^{d-1} \binom{2k}{i}}{2^k-1}$. Recall that for large enough k, $\sum_{i=0}^{d-1} \binom{2k}{i} \leq 2^{2kH_2(\frac{d}{2k})}$. Let $\epsilon > 0$ and $d = H_2^{-1}(\frac{1}{2} \frac{\epsilon}{2})2k$. Show that the fraction of codes with minimum distance $\geq d$ is at least $1 2^{-\epsilon k}$.
- 2. The problem in this family is that we do not know which value of α leads to a good code. Let RS be a Reed Solomon $[2^k 1, 2^{k-1}, 2^{k-1}]_{2^k}$ code.
 - (a) Give a generator matrix for the code RS.
 - (b) Consider the concatenation of the code RS and use as inner codes the codes C_{α} , i.e., the block labeled α is encoded using the code C_{α} . The resulting code is a binary code. What is the blocklength and the dimension of the resulting code? Give a lower bound on the minimum distance that is linear in the blocklength.

2 Hardness on Linear Codes

Definition 2.1. Given a generator \mathcal{G} for a linear code C with a minimum distance r, and a received word y. The output of MLD is 1 if there exists a codeword $c \in C$ such that $\Delta(c, y) \leq r$, and 0 otherwise.

Problem 2.2. Let G = (V, E) be a graph, and let $U_x, U_y \subseteq V$. Show that $\partial_E(U_x) \triangle \partial_E(U_y) = \partial_E(U_x \triangle U_y)$. Here, \triangle denotes the symmetric difference between two sets, and $\partial_E(U) = \{(u, v) \in E : u \in U, v \notin U\}$ for some $U \subseteq V$.

Problem 2.3. Show that MLD is NP-complete.

Problem 2.4. There exists a family of codes C_1, C_2, \ldots with $C_i \in \{0, 1\}^i$ for all $i \ge 1$ such that if there is a polynomial time algorithm solving MLD for all codes in the family, then P = NP.