Tutorial XIV: More on Codes

Homework

1 Constructing good codes

The objective of this problem is to explicitly construct a family of binary linear codes with dimension $k=\Omega(n)$ and minimum distance $d=\Omega(n)$.

1. We will define a family of codes with blocklength $2 k$ and dimension k. Recall that we can view the set $\{0,1\}^{k}$ as a field $\mathbb{F}_{2^{k}}$ (the only thing needed for this problem is that it is a field). More formally, we assume that $\sigma: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2^{k}}$ is a bijection and satisfies the properties $\sigma(0)=0, \sigma(x+y)=\sigma(x)+\sigma(y)$ for any $x, y \in \mathbb{F}_{2}^{k}$ and also $\sigma^{-1}(u+v)=\sigma^{-1}(u)+\sigma^{-1}(v)$ for $u, v \in \mathbb{F}_{2^{k}}$. For every $\alpha \in \mathbb{F}_{2^{k}}$ nonzero, let $C_{\alpha}:\{0,1\}^{k} \rightarrow\{0,1\}^{2 k}$ be defined by $C_{\alpha}(x)=\left(x, \sigma^{-1}(\alpha \cdot \sigma(x))\right)$. Here \cdot denotes the multiplication in the field $\mathbb{F}_{2^{k}}$.
(a) Show that for any α, C_{α} is a linear code. For $\alpha=1$ (the unit for the field $\mathbb{F}_{2^{k}}$), what is the minimum distance of C_{1} ?
(b) Show that for $\alpha \neq \beta, C_{\alpha} \cap C_{\beta}=\{0\}$.
(c) Show that the fraction of codes C_{α} with minimum distance $\leq d-1$ is at most $\frac{\sum_{i=1}^{d-1}\binom{2 k}{i}}{2^{k}-1}$. Recall that for large enough $k, \sum_{i=0}^{d-1}\binom{2 k}{i} \leq 2^{2 k H_{2}\left(\frac{d}{2 k}\right)}$. Let $\epsilon>0$ and $d=H_{2}^{-1}\left(\frac{1}{2}-\frac{\epsilon}{2}\right) 2 k$. Show that the fraction of codes with minimum distance $\geq d$ is at least $1-2^{-\epsilon k}$.
2. The problem in this family is that we do not know which value of α leads to a good code. Let $R S$ be a Reed Solomon $\left[2^{k}-1,2^{k-1}, 2^{k-1}\right]_{2^{k}}$ code.
(a) Give a generator matrix for the code $R S$.
(b) Consider the concatenation of the code $R S$ and use as inner codes the codes C_{α}, i.e., the block labeled α is encoded using the code C_{α}. The resulting code is a binary code. What is the blocklength and the dimension of the resulting code? Give a lower bound on the minimum distance that is linear in the blocklength.

2 Hardness on Linear Codes

Definition 2.1. Given a generator \mathcal{G} for a linear code C with a minimum distance r, and a received word y. The output of MLD is 1 if there exists a codeword $c \in C$ such that $\Delta(c, y) \leq r$, and 0 otherwise.

Problem 2.2. Let $G=(V, E)$ be a graph, and let $U_{x}, U_{y} \subseteq V$. Show that $\partial_{E}\left(U_{x}\right) \triangle \partial_{E}\left(U_{y}\right)=\partial_{E}\left(U_{x} \triangle U_{y}\right)$.
Here, \triangle denotes the symmetric difference between two sets, and $\partial_{E}(U)=\{(u, v) \in E: u \in U, v \notin U\}$ for some $U \subseteq V$.

Problem 2.3. Show that MLD is NP-complete.
Problem 2.4. There exists a family of codes C_{1}, C_{2}, \ldots with $C_{i} \in\{0,1\}^{i}$ for all $i \geq 1$ such that if there is a polynomial time algorithm solving MLD for all codes in the family, then $P=N P$.

