TUTORIAL XI

1 Singleton Bound

For every $(n, k, d)_{q}$-code, show that $k \leq n-d+1$.

2 Weights of Codewords

Let C be an $[n, k, d]$-linear code over \mathbb{F}_{q}. Prove the following.

1. For $q=2$, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.
2. For any q, either all the codewords begin with 0 or exactly a fraction $1 / q$ of the codewords begin with 0 . In general, for a given position $1 \leq i \leq n$, either all codewords contain 0 at the i-th position or each $\alpha \in \mathbb{F}_{q}$ appears at the i-th position of exactly $1 / q$ of the codewords in C.
3. The following inequality holds for the minimum distance d of C.

$$
d \leq \frac{n(q-1) q^{k-1}}{q^{k}-1}
$$

3 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_{q}^{k}$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_{q}, show that the vector $\mathbf{m G}$ is uniformly distributed over \mathbb{F}_{q}^{n}.
2. Let $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$, with $\delta=d / n$. Show that there exists a $k \times n$ matrix \mathbf{G} such that

$$
\text { for every } \mathbf{m} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}, w t(\mathbf{m} \mathbf{G}) \geq d
$$

where $w t(\mathbf{m})$ is the Hamming weight of the vector \mathbf{m}.
3. Show that \mathbf{G} has full rank (i.e., it has dimension at least $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$)

