TUTORIAL XI

1 Singleton Bound

For every $(n, k, d)_q$ -code, show that $k \le n - d + 1$.

2 Weights of Codewords

Let C be an [n, k, d]-linear code over \mathbb{F}_q . Prove the following.

- 1. For q = 2, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.
- 2. For any q, either all the codewords begin with 0 or exactly a fraction 1/q of the codewords begin with 0. In general, for a given position $1 \le i \le n$, either all codewords contain 0 at the *i*-th position or each $\alpha \in \mathbb{F}_q$ appears at the *i*-th position of exactly 1/q of the codewords in C.
- 3. The following inequality holds for the minimum distance d of C.

$$d \le \frac{n(q-1)q^{k-1}}{q^k - 1}$$

3 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

- 1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_q^k$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_q , show that the vector $\mathbf{m}\mathbf{G}$ is uniformly distributed over \mathbb{F}_q^n .
- 2. Let $k = (1 H_q(\delta) \varepsilon)n$, with $\delta = d/n$. Show that there exists a $k \times n$ matrix G such that

for every
$$\mathbf{m} \in \mathbb{F}_a^k \setminus \{\mathbf{0}\}, wt(\mathbf{mG}) \geq d$$

where $wt(\mathbf{m})$ is the Hamming weight of the vector \mathbf{m} .

3. Show that G has full rank (i.e., it has dimension at least $k = (1 - H_q(\delta) - \varepsilon)n$)