TUTORIAL IX

1 Isoperimetric inequality for the discrete hypercube

Let $V=\{0,1\}^{n}$ and let $G=(V, E)$ be the hypercube graph (i.e., we have $(u, v) \in E$ if u and v differ at exactly one coordinate). We define the boundary of $S \subset V$ as the set of all edges that go from the inside of S to the outside of S, i.e., $\partial S=\{(u, v) \in E: u \in S, v \notin S\}$. Furthermore, we call $|S|$ the volume of S, and we denote by $\delta(S)=|\partial S|$ the size of the boundary of S.

1. Show that for any S we have $\delta(S)=n|S|-2 e(S)$, where $e(S)=|\{(u, v) \in E: u, v \in S\}|$ is the number of edges in the subgraph induced by S.
2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a uniform random variable on S. Compute $\sum_{i=1}^{n} H\left(X_{i} \mid X_{-i}\right)$.
3. Prove the entropy chain rule: for arbitrary random variables X_{1}, \ldots, X_{n} we have $H\left(X_{1}, \ldots, X_{n}\right)=$ $\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$.
4. Prove that $\delta(S) \geq|S|(n-\log |S|)$.
5. A k-dimensional subcube is a subset of G obtained by fixing $n-k$ coordinates to some values and allowing the remaining k coordinates to take any value. Show that among the sets of volume 2^{k} subcubes minimize the size of the boundary.

$2 q$-ary Entropy and Volume of Hamming Balls

q-ary entropy function: Let q be an integer and x be a real number such that $q \geq 2$ and $0 \leq x \leq 1$. Then the q-ary entropy function is defined as follows:

$$
H_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Volume of a Hamming ball: Let $q \geq 2$ and $n \geq r \geq 1$ be integers. The volume of a Hamming ball of radius r is given by

$$
\operatorname{Vol}_{q}(r, n)=\left|B_{q}(\mathbf{0}, r)\right|=\sum_{i=0}^{r}\binom{n}{i}(q-1)^{i} .
$$

For $0 \leq p \leq 1-\frac{1}{q}$ real, show that the following bounds hold for large enough n.

1. $\operatorname{Vol}_{q}(p n, n) \leq q^{n H_{q}(p)}$.
2. $\operatorname{Vol}_{q}(p n, n) \geq q^{n H_{q}(p)-o(n)}$. (Hint: Use Stirling's approximation)

3 Finite fields

In this exercise, we will prove some properties of finite fields. In the following, we will denote by \mathbb{F}_{q} a finite field of cardinality q (we will see that there exists a unique field of cardinality q so \mathbb{F}_{q} is in fact "the" finite field of cardinality q).
We recall that a field K is a ring, with a neutral element 0 for the addition and a neutral element 1 for the multiplication $(0 \neq 1)$, and such that every non zero element in K has an inverse for the multiplication. We also want that the multiplication is commutative in K (and of course also the addition is commutative but this is always the case in a ring).

1. Let $n \geq 2$, show that $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is a prime.
2. Prove that there exists a prime p such that \mathbb{F}_{q} contains $\mathbb{Z} / p \mathbb{Z}$.
3. Prove that there is an $n \geq 1$ such that $q=p^{n}$.

So far, we have proven that if \mathbb{F}_{q} is a finite field of cardinality q, then q is a prime power. Now we prove the converse. Assume that $q=p^{n}$ for some prime n, we will construct a finite field of cardinality q.
4. Let K be a field and $P \in K[X]$ a polynomial with coefficients in K. Show that $K[X] /(P)$ is a field if and only if P is irreducible in $K[X]$.
5. We admit that, in $(\mathbb{Z} / p \mathbb{Z})[X]$, there exist irreducible polynomials of any degree. Construct a finite field of cardinality q.
So far, we have proven that there exist finite field of cardinality p^{n} for any prime p and $n \geq 1$ and that there are the unique possible cardinality for finite fields. We will now show that for a given $q=p^{n}$ there is a unique field of cardinality q up to isomorphism (and then we can call it \mathbb{F}_{q} without ambiguity).
6. (Optional) We admit that for any prime p, there exist an algebraic closure of $\mathbb{Z} / p \mathbb{Z}$, that is a field $\overline{\mathbb{F}_{p}}$ that contains $\mathbb{Z} / p \mathbb{Z}$ and such that any polynomial in $\overline{\mathbb{F}_{p}}[X]$ has a root in $\overline{\mathbb{F}_{p}}$ (we also want that all elements of $\overline{\mathbb{F}_{p}}$ are algebraic on $\mathbb{Z} / p \mathbb{Z}$ but this is not important here). Show that $\mathbb{F}_{q}=\left\{a \in \overline{\mathbb{F}_{p}}, a^{q}=a\right\}$.
This proves the unicity of \mathbb{F}_{q}.

