TUTORIAL VIII

Homework 3

Midterm preparation

Problem 1 (Basics). For each one of these statements, say whether it is true or false and provide a brief justification.

- 1. Define the distribution $P_X = (1/5, 1/5, 1/5, 2/5)$. We have $H(X) = \log_2 5$.
- 2. For any random variable $X \in \mathcal{X}$ and any $x \in \mathcal{X}$, we have $P_X(x) \leq 2^{-H(X)}$.
- 3. Define the channel W with binary input and output given by W(0|0) = 1/3, W(1|0) = 2/3, W(0|1) = 1/3, W(1|1) = 2/3. The capacity of this channel is 0.
- 4. Define the tripartite mutual information I(X : Y : Z) = I(X : Y) I(X : Y|Z). For any random variables X, Y, Z, we have $I(X : Y : Z) \ge 0$.
- 5. For any random variables X_1, X_2 , we have $H(X_1X_2) = H(X_1) + H(X_2)$.
- 6. Consider the distribution $P_X = (1/2, 1/4, 1/8, 1/16, 1/16)$. The code with the shortest expected length for this source has expected length exactly H(X).
- 7. Let X_1, \ldots, X_n be iid random variables each living in the finite set \mathcal{X} . A sequence $x^n = (x_1, \ldots, x_n) \in \mathcal{X}^n$ is said to be ϵ -typical if $2^{-n(H(X_1)+\epsilon)} \leq P_{X_1\ldots X_n}(x_1\ldots x_n) \leq 2^{-n(H(X_1)-\epsilon)}$. Now a sequence $x^n = (x_1, \ldots, x_n)$ is said to be ϵ -strongly typical if $(1 - \epsilon)P_{X_1}(a) \leq \frac{N(a|x^n)}{n} \leq (1 + \epsilon)P_{X_1}(a)$ for all $a \in \mathcal{X}$. Here $N(a|x^n)$ denotes the number of times the symbol a occurs in the sequence x^n .

The statement is that if x^n is ϵ -strongly typical, then x^n is $c \cdot \epsilon$ -typical where c is a constant that is independent of n but can depend on the distribution P_{X_1} .

8. If x^n is ϵ -typical, then it is also $c \cdot \epsilon$ -strongly typical for a constant c that is independent of n but can depend on the distribution P_{X_1} .

Problem 2 (Capacity of a simple channel). Define the channel W with binary input $\mathcal{X} = \{0, 1\}$ and binary output $\mathcal{Y} = \{0, 1\}$ and W(0|0) = 1, $W(0|1) = \frac{1}{2}$ and $W(1|1) = \frac{1}{2}$. Show that the information capacity $C(W) = \sup_{x \in [0,1/2]} h_2(x) - 2x$, where $h_2(x) = -x \log_2 x - (1-x) \log_2(1-x)$ is the binary entropy function.

Problem 3 (Compression with side information). In class, we showed that in order to compress a source $X \in \mathcal{X}$ with distribution P_X into ℓ bits, the minimum error probability $\delta^{\text{opt}}(P_X, \ell)$ satisfies for any $\tau > 0$,

$$\mathbf{P}\left\{\log_2 \frac{1}{P_X(X)} > \ell + \tau\right\} - 2^{-\tau} \le \delta^{\text{opt}}(P_X, \ell) \le \mathbf{P}\left\{\log_2 \frac{1}{P_X(X)} > \ell\right\} .$$
(1)

[Added remark: We did not do it this year, but in the tutorial, you proved something very similar]

As a consequence, we showed that in the case where the source X^n is *n* independent copies X_1, \ldots, X_n of *X*, then

$$\lim_{n \to \infty} \delta^{\text{opt}}(P_{X^n}, Rn) = \begin{cases} 1 & \text{if } R < H(X) \\ 0 & \text{if } R > H(X) \end{cases}$$

In this problem, we consider variants of fixed-length compression with side information, i.e., there is a random variable $Y \in \mathcal{Y}$ correlated with the source X that can be used when compressing X. As usual, we write P_{XY} for the joint distribution of X and Y and this distribution is assumed to be known to everybody. Recall that we also write $P_{X|Y}(x|y) = \frac{P_{XY}(x,y)}{P_Y(y)}$.

- In this question, the compressor and the decompressor have access to the random variable Y. More precisely, a compressor is now C : X × Y → {0,1}^ℓ and the decompressor is a function D : {0,1}^ℓ × Y → X. The error probability is defined as P {D(C(X,Y),Y) ≠ X}. Note that the probability is over X and Y. Let us call δ^{opt}(X|Y,ℓ) the smallest error probability over all compressor decompressor pair.
 - (a) Suppose X = Y with probability 1, what can you say on $\delta^{\text{opt}}(X|Y, \ell)$?
 - (b) Show that $\delta^{\text{opt}}(X|Y,\ell) = \mathop{\mathbf{E}}_{y \sim P_Y} \left\{ \delta^{\text{opt}}(P_{X|Y=y},\ell) \right\}$
 - (c) Using Eq. (1) as a black-box, deduce that we have

$$\mathbf{P}\left\{\log_2 \frac{1}{P_{X|Y}(X|Y)} > \ell + \tau\right\} - 2^{-\tau} \le \delta^{\text{opt}}(X|Y,\ell) \le \mathbf{P}\left\{\log_2 \frac{1}{P_{X|Y}(X|Y)} > \ell\right\} \ .$$

- (d) If we now take *n* independent pairs (X_i, Y_i) distributed according to P_{XY} , and let $X^n = X_1...X_n$ and $Y^n = Y_1, ..., Y_n$. What can you say on the limit $\lim_{n\to\infty} \delta^{\text{opt}}(X^n | Y^n, Rn)$ for different values of *R*?
- Now we consider a setting where the compressor *does not* have access to Y. Only the decompressor sees Y. So the compressor is now C : X → {0,1}^ℓ and D : {0,1}^ℓ × Y → X. The error probability is given by P {D(C(X), Y) ≠ X}. We call δ^{opt}_{SW}(X|Y,ℓ) the smallest error probability for such a compressor-decompressor pair in this setting.
 - (a) Using the previous questions, show that

$$\mathbf{P}\left\{\log_2 \frac{1}{P_{X|Y}(X|Y)} > \ell + \tau\right\} - 2^{-\tau} \le \delta_{SW}^{\text{opt}}(X|Y,\ell)$$

(b) We choose the compressor as follows. For every $x \in \mathcal{X}$, let B_x be uniformly random and independent bitstrings of length ℓ . We set $C(x) = B_x$ for all $x \in \mathcal{X}$. Then define

$$D(w,y) = \begin{cases} x & \text{if } x \text{ is the unique such that } C(x) = w \text{ and } \log_2 \frac{1}{P_{X|Y}(x|y)} \le \ell - \tau \\ x_0 & \text{otherwise }, \end{cases}$$

for some arbitrary $x_0 \in \mathcal{X}$. Show that in expectation over the choice of B_x for $x \in \mathcal{X}$, the error probability of the pair (C, D) is bounded above by

$$\mathbf{P}\left\{\log_2 \frac{1}{P_{X|Y}(X|Y)} > \ell - \tau\right\} + 2^{-\tau}$$

- (c) If we now take *n* independent pairs (X_i, Y_i) distributed according to P_{XY} . What can you say on the limit $\lim_{n\to\infty} \delta_{SW}^{\text{opt}}(X^n|Y^n, Rn)$ for different values of *R*?
- 3. (Advice: Only do this question if you have completed the previous ones) We now consider a different setting called distributed compression. Suppose Alice compresses X using C₁ : X → {0,1}^{ℓ1} and Charlie compresses Y using C₂ : Y → {0,1}^{ℓ2} and the decompressor D : {0,1}^{ℓ1} × {0,1}^{ℓ2} → X × Y received both C₁(X) and C₂(Y) and is asked to recover both X and Y. In this case the error probability of error if given by P {D(C₁(X), C₂(Y)) ≠ (X, Y)}. We then denote δ^{opt}(X, Y, ℓ₁, ℓ₂) to be the smallest error probability that can be achieved. Take n independent pairs (X_i, Y_i) distributed according to P_{XY}.
 - (a) Show that if $R_1 > H(X)$ and $R_2 > H(Y|X)$, then the limit

$$\lim_{n \to \infty} \delta^{\text{opt}}(X^n, Y^n, R_1 n, R_2 n) = 0 .$$

(b) More generally, what can you say on the set $\mathcal{R} \subset \mathbb{R}_+ \times \mathbb{R}_+$ of rates such that $\lim_{n\to\infty} \delta^{\text{opt}}(X^n, Y^n, R_1n, R_2n) = 0$ for any $(R_1, R_2) \in \mathcal{R}$? (Do not worry about the boundary $\partial \mathcal{R}$ of \mathcal{R}). Try to draw schematically the set \mathcal{R} .