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TUTORIAL VIII

Homework 3

Midterm preparation
Problem 1 (Basics). For each one of these statements, say whether it is true or false and provide a brief
justification.

1. Define the distribution PX = (1/5, 1/5, 1/5, 2/5). We have H(X) = log2 5.

2. For any random variable X ∈ X and any x ∈ X , we have PX(x) ≤ 2−H(X).

3. Define the channel W with binary input and output given by W (0|0) = 1/3,W (1|0) =
2/3,W (0|1) = 1/3,W (1|1) = 2/3. The capacity of this channel is 0.

4. Define the tripartite mutual information I(X : Y : Z) = I(X : Y ) − I(X : Y |Z). For any random
variables X, Y, Z, we have I(X : Y : Z) ≥ 0.

5. For any random variables X1, X2, we have H(X1X2) = H(X1) +H(X2).

6. Consider the distribution PX = (1/2, 1/4, 1/8, 1/16, 1/16). The code with the shortest expected
length for this source has expected length exactly H(X).

7. Let X1, . . . , Xn be iid random variables each living in the finite set X . A sequence xn =
(x1, . . . , xn) ∈ X n is said to be ε-typical if 2−n(H(X1)+ε) ≤ PX1...Xn(x1 . . . xn) ≤ 2−n(H(X1)−ε).
Now a sequence xn = (x1, . . . , xn) is said to be ε-strongly typical if (1 − ε)PX1(a) ≤

N(a|xn)
n

≤
(1 + ε)PX1(a) for all a ∈ X . Here N(a|xn) denotes the number of times the symbol a occurs in the
sequence xn.

The statement is that if xn is ε-strongly typical, then xn is c · ε-typical where c is a constant that is
independent of n but can depend on the distribution PX1 .

8. If xn is ε-typical, then it is also c · ε-strongly typical for a constant c that is independent of n but can
depend on the distribution PX1 .

Problem 2 (Capacity of a simple channel). Define the channelW with binary input X = {0, 1} and binary
output Y = {0, 1} and W (0|0) = 1, W (0|1) = 1

2
and W (1|1) = 1

2
. Show that the information capacity

C(W ) = supx∈[0,1/2] h2(x) − 2x, where h2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy
function.

Problem 3 (Compression with side information). In class, we showed that in order to compress a source
X ∈ X with distribution PX into ` bits, the minimum error probability δopt(PX , `) satisfies for any τ > 0,

P

{
log2

1

PX(X)
> `+ τ

}
− 2−τ ≤ δopt(PX , `) ≤ P

{
log2

1

PX(X)
> `

}
. (1)

[Added remark: We did not do it this year, but in the tutorial, you proved something very similar]



As a consequence, we showed that in the case where the sourceXn is n independent copiesX1, . . . , Xn

of X , then

lim
n→∞

δopt(PXn , Rn) =

{
1 if R < H(X)
0 if R > H(X) .

In this problem, we consider variants of fixed-length compression with side information, i.e., there is a
random variable Y ∈ Y correlated with the source X that can be used when compressing X . As usual, we
write PXY for the joint distribution of X and Y and this distribution is assumed to be known to everybody.
Recall that we also write PX|Y (x|y) = PXY (x,y)

PY (y)
.

1. In this question, the compressor and the decompressor have access to the random variable Y .
More precisely, a compressor is now C : X × Y → {0, 1}` and the decompressor is a function
D : {0, 1}` × Y → X . The error probability is defined as P {D(C(X, Y ), Y ) 6= X}. Note that the
probability is overX and Y . Let us call δopt(X|Y, `) the smallest error probability over all compressor-
decompressor pair.

(a) Suppose X = Y with probability 1, what can you say on δopt(X|Y, `)?
(b) Show that δopt(X|Y, `) = E

y∼PY

{
δopt(PX|Y=y, `)

}
(c) Using Eq. (1) as a black-box, deduce that we have

P

{
log2

1

PX|Y (X|Y )
> `+ τ

}
− 2−τ ≤ δopt(X|Y, `) ≤ P

{
log2

1

PX|Y (X|Y )
> `

}
.

(d) If we now take n independent pairs (Xi, Yi) distributed according to PXY , and let Xn = X1...Xn

and Y n = Y1, ..., Yn. What can you say on the limit limn→∞ δ
opt(Xn|Y n, Rn) for different values

of R?

2. Now we consider a setting where the compressor does not have access to Y . Only the decompressor
sees Y . So the compressor is now C : X → {0, 1}` and D : {0, 1}` × Y → X . The error probability
is given by P {D(C(X), Y ) 6= X}. We call δopt

SW (X|Y, `) the smallest error probability for such a
compressor-decompressor pair in this setting.

(a) Using the previous questions, show that

P

{
log2

1

PX|Y (X|Y )
> `+ τ

}
− 2−τ ≤ δopt

SW (X|Y, `) .

(b) We choose the compressor as follows. For every x ∈ X , let Bx be uniformly random and
independent bitstrings of length `. We set C(x) = Bx for all x ∈ X . Then define

D(w, y) =

{
x if x is the unique such that C(x) = w and log2

1
PX|Y (x|y) ≤ `− τ

x0 otherwise ,

for some arbitrary x0 ∈ X . Show that in expectation over the choice of Bx for x ∈ X , the error
probability of the pair (C,D) is bounded above by

P

{
log2

1

PX|Y (X|Y )
> `− τ

}
+ 2−τ .
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(c) If we now take n independent pairs (Xi, Yi) distributed according to PXY . What can you say on
the limit limn→∞ δ

opt
SW (Xn|Y n, Rn) for different values of R?

3. (Advice: Only do this question if you have completed the previous ones) We now consider a different
setting called distributed compression. Suppose Alice compresses X using C1 : X → {0, 1}`1 and
Charlie compresses Y using C2 : Y → {0, 1}`2 and the decompressorD : {0, 1}`1×{0, 1}`2 → X×Y
received bothC1(X) andC2(Y ) and is asked to recover bothX and Y . In this case the error probability
of error if given by P {D(C1(X), C2(Y )) 6= (X, Y )}. We then denote δopt(X, Y, `1, `2) to be the
smallest error probability that can be achieved. Take n independent pairs (Xi, Yi) distributed according
to PXY .

(a) Show that if R1 > H(X) and R2 > H(Y |X), then the limit

lim
n→∞

δopt(Xn, Y n, R1n,R2n) = 0 .

(b) More generally, what can you say on the setR ⊂ R+ × R+ of rates such that
limn→∞ δ

opt(Xn, Y n, R1n,R2n) = 0 for any (R1, R2) ∈ R? (Do not worry about the boundary
∂R ofR). Try to draw schematically the setR.
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