Tutorial XIV: Revision for Final

Problem 1 (True or false). For each one of these statements, say whether it is true or false and provide a brief justification.

1. There are at most $2^{n k}$ binary linear codes of blocklength n and dimension k.
2. Let C be a randomly chosen binary code with blocklength n and dimension $n / 2$, i.e., a uniformly distributed subset of $\{0,1\}^{n}$ of size $2^{n / 2}$. Then, with probability going to 1 as $n \rightarrow \infty, C$ is not a linear code.
3. Consider the distribution $P_{X}=(1 / 2,1 / 6,1 / 6,1 / 6)$. The code with the shortest expected length for this source has expected length exactly $H(X)$.
4. Let W be a channel with binary input and output such that $W(0 \mid 0) \neq W(0 \mid 1)$, i.e., the output distributions are different for different inputs. The capacity of this channel is >0.
5. Let X_{1}, \ldots, X_{n} be iid boolean random variables with distribution $P_{X_{1}}(0)=1 / 4$ and $P_{X_{1}}(1)=3 / 4$. Let $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ be such that $\left|\left\{i \in\{1, \ldots, n\}: x_{i}=0\right\}\right|=n / 2$. Then, for large enough n, $\left(x_{1}, \ldots, x_{n}\right)$ is $\frac{1}{100}$-typical, i.e., $2^{-n\left(H\left(X_{1}\right)+\frac{1}{100}\right)} \leq P_{X_{1} \ldots X_{n}}\left(x_{1}, \ldots, x_{n}\right) \leq 2^{-n\left(H\left(X_{1}\right)-\frac{1}{100}\right)}$.
6. Let $G=\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0\end{array}\right]$. The binary code whose generator matrix is G has a minimum distance of 4 .
7. The code $C=\{0000,0011,1111\}$ can detect any error on two bits.
8. The code over \mathbb{F}_{5} with generator matrix $G=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4\end{array}\right]$ has a minimum distance of 3 and among all codes over \mathbb{F}_{5} with the same blocklength and dimension it has the largest possible minimum distance.
9. For any random variable $X \in \mathcal{X}$, there exists an $x \in \mathcal{X}$ such that $P_{X}(x) \leq 2^{-H(X)}$.

Problem 2 (Repetition code). Let $C_{k}^{(r)}$ be a binary repetition code whose encoding function repeats each bit of the message r times. More precisely, for a bitstring $m_{1} \ldots m_{k} \in\{0,1\}^{k}$, let $C_{k}^{(r)}\left(m_{1} \ldots m_{k}\right)=m_{1}^{(r)} \ldots m_{k}^{(r)} \in$ $\{0,1\}^{r k}$, where $m^{(r)}$ denotes the concatenation of r copies of the bit m.

1. Show that $C_{k}^{(r)}$ is a linear code with minimum distance r. In other words, it is a $[r k, k, r]_{2}$ code.
2. Write a generator matrix and a parity check matrix for $C_{k}^{(r)}$.
3. Recall that $\operatorname{BSC}_{f}(b \mid b)=1-f$ and $\operatorname{BSC}_{f}(1-b \mid b)=f$ for any $b \in\{0,1\}$. We would like to know if it is a good idea to use a code $C_{k}^{(r)}$ to achieve reliable communication close to the capacity of the channel $\mathrm{BSC}_{0.25}$. What is the capacity of the channel BSC $\mathrm{C}_{0.25}$?
4. Given that $\frac{1}{9} \approx 0.111$ and $1-H_{2}(0.25) \approx 0.189$, let us choose $r=9$ to code at a rate not too far from the capacity. If we use the code $C_{k}^{(9)}$ to transmit k bits over $9 k$ copies of $\mathrm{BSC}_{0.25}$, can we make the error probability for decoding go to 0 as $k \rightarrow \infty$?

Problem 3 (Constructing good codes). The objective of this problem is to explicitly construct a family of binary linear codes with dimension $k=\Omega(n)$ and minimum distance $d=\Omega(n)$.

1. We will define a family of codes with blocklength $2 k$ and dimension k. Recall that we can view the set $\{0,1\}^{k}$ as a field $\mathbb{F}_{2^{k}}$ (the only thing needed for this problem is that it is a field). More formally, we assume that $\sigma: \mathbb{F}_{2}^{k} \rightarrow \mathbb{F}_{2^{k}}$ is a bijection and satisfies the properties $\sigma(0)=0, \sigma(x+y)=\sigma(x)+\sigma(y)$ for any $x, y \in \mathbb{F}_{2}^{k}$ and also $\sigma^{-1}(u+v)=\sigma^{-1}(u)+\sigma^{-1}(v)$ for $u, v \in \mathbb{F}_{2^{k}}$. For every $\alpha \in \mathbb{F}_{2^{k}}$ nonzero, let $C_{\alpha}:\{0,1\}^{k} \rightarrow\{0,1\}^{2 k}$ be defined by $C_{\alpha}(x)=\left(x, \sigma^{-1}(\alpha \cdot \sigma(x))\right)$. Here \cdot denotes the multiplication in the field $\mathbb{F}_{2^{k}}$.
(a) Show that for any α, C_{α} is a linear code. For $\alpha=1$ (the unit for the field $\mathbb{F}_{2^{k}}$), what is the minimum distance of C_{1} ?
(b) Show that for $\alpha \neq \beta, C_{\alpha} \cap C_{\beta}=\{0\}$.
(c) Show that the fraction of $\operatorname{codes} C_{\alpha}$ with minimum distance $\leq d-1$ is at most $\frac{\sum_{i=1}^{d-1}\binom{2 k}{i}}{2^{k}-1}$. Recall that for large enough $k, \sum_{i=0}^{d-1}\binom{2 k}{i} \leq 2^{2 k H_{2}\left(\frac{d}{2 k}\right)}$. Let $\epsilon>0$ and $d=H_{2}^{-1}\left(\frac{1}{2}-\frac{\epsilon}{2}\right) 2 k$. Show that the fraction of codes with minimum distance $\geq d$ is at least $1-2^{-\epsilon k}$.
2. The problem in this family is that we do not know which value of α leads to a good code. Let $R S$ be a Reed Solomon $\left[2^{k}-1,2^{k-1}, 2^{k-1}\right]_{2^{k}}$ code.
(a) Give a generator matrix for the code $R S$.
(b) Consider the concatenation of the code $R S$ and use as inner codes the codes C_{α}, i.e., the block labeled α is encoded using the code C_{α}. The resulting code is a binary code. What is the blocklength and the dimension of the resulting code? Give a lower bound on the minimum distance that is linear in the blocklength.

Problem 4. Given two channels $W_{Y_{1} \mid X_{1}}^{1}$ and $W_{Y_{2} \mid X_{2}}^{2}$ with input spaces $\mathcal{X}_{1}, \mathcal{X}_{2}$ and outputs spaces $\mathcal{Y}_{1}, \mathcal{Y}_{2}$. Consider the channel W^{12} defined on input space $\mathcal{X}_{1} \times \mathcal{X}_{2}$ and output space $\mathcal{Y}_{1} \times \mathcal{Y}_{2}$ and $W_{Y_{1} Y_{2} \mid X_{1} X_{2}}^{12}\left(y_{1} y_{2} \mid x_{1} x_{2}\right)=$ $W_{Y_{1} \mid X_{1}}^{1}\left(y_{1} \mid x_{1}\right) \cdot W_{Y_{2} \mid X_{2}}^{2}\left(y_{2} \mid x_{2}\right)$. Compute $\mathrm{C}\left(W^{12}\right)=\max _{P_{X_{1} X_{2}}} I\left(X_{1} X_{2}: Y_{1} Y_{2}\right)$ (where $Y_{1} Y_{2}$ is the output of W^{12} when the input is $X_{1} X_{2}$) as a function $\mathrm{C}\left(W^{1}\right)$ and $\mathrm{C}\left(W^{2}\right)$.

Problem 5. Let C be an $[n, k]_{2}$ linear code with w_{j} denoting the number of codewords of C of Hamming weight j for $0 \leq j \leq n$. Define the polynomial $f(X)=\sum_{j=0}^{n} w_{j} X^{j}$.

1. What is the value of w_{0} and $\sum_{j=0}^{n} w_{j}$?
2. Suppose C is used for the transmission over n copies of the binary symmetric channel with flip probability $p<\frac{1}{2}$ and that we use a maximum likelihood decoder, i.e., given $y \in\{0,1\}^{n}$, the decoder outputs $c \in C$ such that the Hamming distance between y and c is minimized. Show that for any transmitted codeword, the probability of an incorrect decoding is at most $f(\xi)-1$ with $\xi=\sqrt{4 p(1-p)}$.
