Tutorial XII

1 Singleton Bound

For every $(n, k, d)_{q}$-code, show that $k \leq n-d+1$.

2 Weights of Codewords

Let C be an $[n, k, d]$-linear code over \mathbb{F}_{q}. Prove the following.

1. For $q=2$, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.
2. For any q, either all the codewords begin with 0 or exactly a fraction $1 / q$ of the codewords begin with 0 . In general, for a given position $1 \leq i \leq n$, either all codewords contain 0 at the i-th position or each $\alpha \in \mathbb{F}_{q}$ appears at the i-th position of exactly $1 / q$ of the codewords in C.
3. The following inequality holds for the minimum distance d of C.

$$
d \leq \frac{n(q-1) q^{k-1}}{q^{k}-1}
$$

$3 q$-ary Entropy and Volume of Hamming Balls

q-ary entropy function: Let q be an integer and x be a real number such that $q \geq 2$ and $0 \leq x \leq 1$. Then the q-ary entropy function is defined as follows:

$$
H_{q}(x)=x \log _{q}(q-1)-x \log _{q} x-(1-x) \log _{q}(1-x) .
$$

Volume of a Hamming ball: Let $q \geq 2$ and $n \geq r \geq 1$ be integers. The volume of a Hamming ball of radius r is given by

$$
\operatorname{Vol}_{q}(r, n)=\left|B_{q}(\mathbf{0}, r)\right|=\sum_{i=0}^{r}\binom{n}{i}(q-1)^{i} .
$$

For $0 \leq p \leq 1-\frac{1}{q}$ real, show that for large enough n, we have: $\operatorname{Vol}_{q}(p n, n) \leq q^{n H_{q}(p)}$.
Remark. Using Stirling's approximation, we can show that: $\operatorname{Vol}_{q}(p n, n) \geq q^{n H_{q}(p)-o(n)}$ (exercise!).

4 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_{q}^{k}$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_{q}, show that the vector mG is uniformly distributed over \mathbb{F}_{q}^{n}.
2. Let $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$, with $\delta=d / n$. Show that there exists a $k \times n$ matrix \mathbf{G} such that

$$
\forall \mathbf{m} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\},|\mathbf{m G}| \geq d
$$

3. Show that \mathbf{G} has full rank (i.e., it has dimension at least $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$)
