TUTORIAL XII

1 Singleton Bound

For every $(n, k, d)_q$ -code, show that $k \leq n - d + 1$.

2 Weights of Codewords

Let C be an [n, k, d]-linear code over \mathbb{F}_q . Prove the following.

- 1. For q = 2, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.
- 2. For any q, either all the codewords begin with 0 or exactly a fraction 1/q of the codewords begin with 0. In general, for a given position $1 \le i \le n$, either all codewords contain 0 at the *i*-th position or each $\alpha \in \mathbb{F}_q$ appears at the *i*-th position of exactly 1/q of the codewords in C.
- 3. The following inequality holds for the minimum distance d of C.

$$d \leq \frac{n(q-1)q^{k-1}}{q^k - 1}$$

3 *q*-ary Entropy and Volume of Hamming Balls

q-ary entropy function: Let q be an integer and x be a real number such that $q \ge 2$ and $0 \le x \le 1$. Then the q-ary entropy function is defined as follows:

 $H_q(x) = x \log_q(q-1) - x \log_q x - (1-x) \log_q(1-x).$

Volume of a Hamming ball: Let $q \ge 2$ and $n \ge r \ge 1$ be integers. The volume of a Hamming ball of radius r is given by

$$\operatorname{Vol}_q(r,n) = |B_q(\mathbf{0},r)| = \sum_{i=0}^r \binom{n}{i} (q-1)^i.$$

For $0 \le p \le 1 - \frac{1}{q}$ real, show that for large enough n, we have: $\operatorname{Vol}_q(pn, n) \le q^{nH_q(p)}$.

Remark. Using Stirling's approximation, we can show that: $\operatorname{Vol}_q(pn, n) \ge q^{nH_q(p)-o(n)}$ (exercise!).

4 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

- 1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_q^k$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_q , show that the vector $\mathbf{m}\mathbf{G}$ is uniformly distributed over \mathbb{F}_q^n .
- 2. Let $k = (1 H_q(\delta) \varepsilon)n$, with $\delta = d/n$. Show that there exists a $k \times n$ matrix G such that

$$\forall \mathbf{m} \in \mathbb{F}_q^k \setminus \{\mathbf{0}\}, |\mathbf{mG}| \ge d$$

3. Show that G has full rank (i.e., it has dimension at least $k = (1 - H_q(\delta) - \varepsilon)n$)