HW 2-CORRECTION

1 Homework 2

1. Let $A_{q}(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $\left.(n, k, d)_{q}\right)$. Determine $A_{2}(3, d)$ for all integers $d \geq 1$.

A: We know that $\forall[n, k, d]_{q}-$ code, we have:

$$
k \leq n-\log _{q}\left(\sum_{i=1}^{\left\lfloor\frac{d-1}{2}\right\rfloor}\binom{n}{i}(q-1)^{i}\right)
$$

- Since $n=3$, for $d>3$, we have $A_{2}(3, d)=0$ (cannot have two words with 3 bits but having Hamming distance $d>3$).
- For $d=1$, we have $k \leq 3$, and we can achieve the equality by taking $C=\{0,1\}^{3}$, so we can encode all words with Hamming distance 1, and $A_{2}(3,1)=3$.
- For $d=2$, we have $k \leq 3$, but $k \neq 3$ because we cannot encode all 3-bits codewords with Hamming distance 2. But we can achieve $k=2$ by taking $C=\{000,011,101,110\}$. So, $A_{2}(3,2)$.
- For $d=3$, then $k \leq 1$, and it is achievable by taking $C=\{000,111\}$, so $A_{2}(3,3)=1$.

2. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_{2}$ provided that

$$
\begin{equation*}
2^{n-k}>1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2} \tag{1}
\end{equation*}
$$

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7,4,3]_{2}$ Hamming code.

A: Consider \mathbb{F}_{2}^{n-k} as the set of column vector of length $(n-k)$ over \mathbb{F}_{2}. Construct parity check matrix H as follows.

1. Begin with $H=h_{1}$, where h_{1} is any nonzero vector in \mathbb{F}_{2}^{n-k}.
2. $\forall i \geq 2$, choose h_{i} as the vector in $\mathbb{F}_{2}^{n-k} \backslash H$ such that h_{i} cannot be written as a linear combination of $(d-2)$ or fewer of the vectors in H (recall that $H=\left\{h_{1}, \ldots, h_{i-1}\right\}$).
3. Set $H \leftarrow H \cup\left\{h_{i}\right\}$.
4. Repeat step (2) until n column vectors are constructed (i.e. $|H|=n$).

Now, we show that the matrix H composed by the column vectors $\left\{h_{1}, \ldots, h_{n}\right\}$ is the PCM of an $[n, k, d]_{2^{-}}$ linear code.

In the end of the procedure, we have matrix H of size $(n-k) \times n$, and every subset of $(d-1)$ vectors of $\left\{h_{1}, \ldots, h_{n}\right\}$ are linearly independent. Moreover, H is a full-rank matrix, i.e. $\operatorname{dim}(H)=n-k$.

So we can construct an $[n, k, d]_{2}$-linear code by taking the generator matrix $G=\operatorname{kernel}(H)$ which is of size $k \times n$, and $\operatorname{dim}(G)=k$, and defining $C=x \cdot G$, with x is taken over \mathbb{F}_{2}^{k}.

Since any subset of $(d-1)$ column vectors of H are linearly independent, then we know that the minimum distance of C is d. So, C is an $[n, k, d]_{2}$-linear code.

Now we show that H can be constructed if:

$$
\begin{equation*}
2^{n-k}>1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2} \tag{2}
\end{equation*}
$$

Assume that by running the algorithm we have found vectors $\left\{h_{1}, \ldots, h_{j}\right\}$ with $1 \leq j \leq n-1$. The number of different linear combinations of $(d-2)$ of fewer of the set $\left\{h_{1}, \ldots, h_{j}\right\}$ is:

$$
\sum_{i=0}^{d-2}\binom{j}{i} \leq \sum_{i=0}^{d-2}\binom{n-1}{i}=\binom{n-1}{1}+\cdots+\binom{n-1}{d-2}
$$

So if the inequality 2 holds, we know that there is a vector $h_{j+1} \in \mathbb{F}_{2}^{n-k}$ which is not a linear combination of $(d-2)$ or fewer vectors of $\left\{h_{1}, \ldots, h_{j}\right\}$ (i.e. h_{j+1} is independent of $\left\{h_{i_{1}}, \ldots, h_{i_{k}}\right\} ; k \leq d-2$).

Thus, by induction on j, we can conclude that we can obtain $\left\{h_{1}, \ldots, h_{n}\right\}$.
For the particular case of $[7,4,3]_{2}$-Hamming code, we have $2^{7-4}>1+\binom{7-1}{1}$ (so, we can use the algorithm to get its PCM).
3. A well-studied family of codes is called cyclic codes. Their defining property is that if $\left(c_{0}, \ldots, c_{n-1}\right) \in C$ then $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$. Show that if β is a generator of \mathbb{F}_{q}^{*} and $\alpha_{i}=\beta^{i-1}$ with $n=q-1$, then the $[n, k]_{q}$ Reed-Solomon code is cyclic.

A: Since β is the generator of $\mathbb{F}_{q}^{*},\{1,2, \ldots, q-1\}=\left\{1, \beta^{1}, \beta^{2}, \ldots, \beta^{q-2}\right\}$. Moreover, $\beta^{q-1}=\beta^{0}=1$, and in general $\beta^{i}=\beta^{i}+k(q-1) ; k \in \mathbb{Z}$.

To prove that $C=[n, k]_{q} R-S$ is cyclic, we need to show that:

$$
\forall\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C, \text { then }\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C
$$

Indeed: $\forall\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C$, we can write it as:

$$
\begin{aligned}
\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) & =\left(f_{m}\left(\alpha_{1}\right), \ldots, f_{m}\left(\alpha_{n}\right)\right) \\
& =\left(f_{m}\left(\beta^{0}\right), \ldots, f_{m}\left(\beta^{n-1}\right)\right)
\end{aligned}
$$

where $f_{m}(x)=\sum_{j=0}^{k-1} m_{j} x^{j}, \forall x \in\left\{\beta^{0}, \ldots, \beta^{n-1}\right\}$ for some $m=\left(m_{0}, \ldots, m_{k-1}\right) \in \mathbb{F}_{q}^{k}$.
Then, showing $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$ is equivalent to showing that:

$$
\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right)=\left(f_{m^{\prime}}\left(\beta^{0}\right), f_{m^{\prime}}\left(\beta^{1}\right), \ldots, f_{m^{\prime}}\left(\beta^{n-1}\right)\right)
$$

for some $m^{\prime}=\left(m_{0}^{\prime}, \ldots, m_{k-1}^{\prime}\right) \in \mathbb{F}_{q}^{k}$.
Consider $m^{\prime}=\left(m_{0}^{\prime}, \ldots, m_{k-1}^{\prime}\right)$ where $\forall j \in\{0,1, \ldots, k-1\}, m_{j}^{\prime}=m_{j} \cdot \beta^{-j}$. Clearly, $m^{\prime} \in \mathbb{F}_{q}^{k}$. Then, $\forall i \in\{1,2, \ldots, n\}$, we have:

$$
f_{m^{\prime}}\left(\beta^{i}\right)=\sum_{j=0}^{k-1} m_{j}^{\prime}\left(\beta^{i}\right)^{j}=\sum_{j=0}^{k-1} m_{j} \cdot \beta^{-j} \cdot\left(\beta^{i}\right)^{j}=m_{j}\left(\beta^{i-1}\right)^{j}=f_{m}\left(\beta^{i-1}\right)
$$

and $f_{m^{\prime}}\left(\beta^{0}\right)=f_{m^{\prime}}\left(\beta^{q-1}\right)=f_{m^{\prime}}\left(\beta^{n}\right)=f_{m}\left(\beta^{n-1}\right)$.

Therefore,

$$
\begin{aligned}
\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) & =\left(f_{m}\left(\beta^{n-1}\right), f_{m}\left(\beta^{0}\right), \ldots, f_{m}\left(\beta^{n-2}\right)\right) \\
& =\left(f_{m^{\prime}}\left(\beta^{0}\right), f_{m^{\prime}}\left(\beta^{1}\right), \ldots, f_{m^{\prime}}\left(\beta^{n-1}\right)\right)
\end{aligned}
$$

So, $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$, hence C is cyclic.
4. The Hadamard code has a nice property that it can be locally decoded. Let $C_{H a d, r}:\{0,1\}^{r} \rightarrow$ $\{0,1\}^{2^{r}}$ be the encoding function of the Hadamard code. Suppose you are interested only in the i-th bit x_{i} of the message $x \in\{0,1\}^{r}$. The challenge is that you only have access to $y \in\{0,1\}^{2^{r}}$ such that $\Delta\left(C_{H a d, r}(x), y\right) \leq \frac{2^{r}}{10}$ and you would like to look only at a few bits of y. Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine x_{i} correctly with probability $4 / 5$ (the probability here is over the choice of the queries, in particular x, y and i are fixed).
Hint: You might want to query y at the position labelled by $u \in\{0,1\}^{r}$ at random and the position $u+e_{i}$ where $e_{i} \in\{0,1\}^{r}$ is the binary representation of i

A: We will query y_{u} and $y_{u+e_{i}}$, where y_{u} and $y_{u+e_{i}}$ is the bit of y corresponds to the decimal value of u and $u+e_{i}$ respectively, with u is chosen randomly over $\{0,1\}^{r}$ and $e_{i}=(0 \ldots 010 \ldots 0)$ (with 1 at the i-th position).

Note that every k-th bit of $C_{H a d, r}(x)$ corresponds to one of $k \in\{0,1\}^{r}$ and the message x, i.e. we can write:

$$
C_{H a d, r}(x)_{k}=x \odot k
$$

with $x \odot k=\left(\sum_{i=1}^{r} x_{i} \cdot k_{i}\right)(\bmod 2)$.
Now notice that:

$$
\begin{aligned}
(x \odot u)+\left(x \odot\left(u+e_{i}\right)\right) & \equiv(x \odot u)+(x \odot u)+\left(x \odot e_{i}\right) \\
& \equiv\left(x \odot e_{i}\right)(\bmod 2) \\
& \equiv x_{i}
\end{aligned}
$$

So we can determine x_{i} correctly if and only if we can determine both $(x \odot u)$ and $\left(x \odot\left(u+e_{i}\right)\right)$ correctly.
Note that u is picked randomly (also uniformly) from the set $\{0,1\}^{r}$. Then, since we have: $\Delta\left(C_{H a d, r}(x), y\right) \leq \frac{2^{r}}{10}$, we know that:

$$
\mathbb{P}(x \odot u \text { is wrong })=\mathbb{P}\left(x \odot\left(u+e_{i}\right) \text { is wrong }\right) \leq \frac{1}{10}
$$

Therefore:

$$
\begin{aligned}
\mathbb{P}\left(x_{i} \text { is correct }\right) & =1-\mathbb{P}\left(x \odot u \text { is wrong or } x \odot\left(u+e_{i}\right) \text { is wrong }\right) \\
& \geq 1-\left(\mathbb{P}(x \odot u \text { is wrong })+\mathbb{P}\left(x \odot\left(u+e_{i}\right) \text { is wrong }\right)\right) \\
& \geq 1-\left(\frac{1}{10}+\frac{1}{10}\right) \\
& =\frac{4}{5}
\end{aligned}
$$

So, $\mathbb{P}\left(\right.$ we can determine x_{i} correctly $) \geq \frac{4}{5}$.

