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HW 2 - CORRECTION

1 Homework 2
1. Let Aq(n, d) be the largest k such that a code over alphabet {1, . . . , q} of block length n, dimension
k and minimum distance d exists (recall that this corresponds to the notation (n, k, d)q). Determine
A2(3, d) for all integers d ≥ 1.

A: We know that ∀ [n, k, d]q − code, we have:

k ≤ n− logq
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• Since n = 3, for d > 3, we haveA2(3, d) = 0 (cannot have two words with 3 bits but having Hamming

distance d > 3).

• For d = 1, we have k ≤ 3, and we can achieve the equality by taking C = {0, 1}3, so we can encode
all words with Hamming distance 1, and A2(3, 1) = 3.

• For d = 2, we have k ≤ 3, but k 6= 3 because we cannot encode all 3-bits codewords with Hamming
distance 2. But we can achieve k = 2 by taking C = {000, 011, 101, 110}. So, A2(3, 2).

• For d = 3, then k ≤ 1, and it is achievable by taking C = {000, 111}, so A2(3, 3) = 1.

2. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a
binary linear code [n, k, d]2 provided that

2n−k > 1 +

(
n− 1

1

)
+ · · ·+

(
n− 1

d− 2

)
. (1)

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is
tight for the [7, 4, 3]2 Hamming code.

A: Consider Fn−k
2 as the set of column vector of length (n− k) over F2. Construct parity check matrix H as

follows.

1. Begin with H = h1, where h1 is any nonzero vector in Fn−k
2 .

2. ∀i ≥ 2, choose hi as the vector in Fn−k
2 \H such that hi cannot be written as a linear combination of

(d− 2) or fewer of the vectors in H (recall that H = {h1, . . . , hi−1}).

3. Set H ← H ∪ {hi}.

4. Repeat step (2) until n column vectors are constructed (i.e. |H| = n).

Now, we show that the matrix H composed by the column vectors {h1, . . . , hn} is the PCM of an [n, k, d]2-
linear code.

In the end of the procedure, we have matrix H of size (n − k) × n, and every subset of (d − 1) vectors of
{h1, . . . , hn} are linearly independent. Moreover, H is a full-rank matrix, i.e. dim(H) = n− k.



So we can construct an [n, k, d]2-linear code by taking the generator matrix G = kernel(H) which is of size
k × n, and dim(G) = k, and defining C = x ·G, with x is taken over Fk

2 .

Since any subset of (d − 1) column vectors of H are linearly independent, then we know that the minimum
distance of C is d. So, C is an [n, k, d]2-linear code.

Now we show that H can be constructed if:
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+ · · ·+

(
n− 1

d− 2

)
(2)

Assume that by running the algorithm we have found vectors {h1, . . . , hj} with 1 ≤ j ≤ n− 1. The number
of different linear combinations of (d− 2) of fewer of the set {h1, . . . , hj} is:

d−2∑
i=0

(
j
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)
≤
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So if the inequality 2 holds, we know that there is a vector hj+1 ∈ Fn−k
2 which is not a linear combination of

(d− 2) or fewer vectors of {h1, . . . , hj} (i.e. hj+1 is independent of {hi1 , . . . , hik} ; k ≤ d− 2).

Thus, by induction on j, we can conclude that we can obtain {h1, . . . , hn}.

For the particular case of [7, 4, 3]2-Hamming code, we have 27−4 > 1 +
(
7−1
1

)
(so, we can use the algorithm

to get its PCM).

3. A well-studied family of codes is called cyclic codes. Their defining property is that if
(c0, . . . , cn−1) ∈ C then (cn−1, c0, . . . , cn−2) ∈ C. Show that if β is a generator of F∗q and αi = βi−1

with n = q − 1, then the [n, k]q Reed-Solomon code is cyclic.

A: Since β is the generator of F∗q , {1, 2, . . . , q− 1} = {1, β1, β2, . . . , βq−2}. Moreover, βq−1 = β0 = 1, and
in general βi = βi + k(q − 1); k ∈ Z.

To prove that C = [n, k]q R-S is cyclic, we need to show that:

∀(c0, c1, . . . , cn−1) ∈ C, then (cn−1, c0, . . . , cn−2) ∈ C

Indeed: ∀(c0, c1, . . . , cn−1) ∈ C, we can write it as:

(c0, c1, . . . , cn−1) = (fm(α1), . . . , fm(αn))

= (fm(β0), . . . , fm(βn−1))

where fm(x) =
∑k−1

j=0 mjx
j , ∀x ∈ {β0, . . . , βn−1} for some m = (m0, . . . ,mk−1) ∈ Fk

q .

Then, showing (cn−1, c0, . . . , cn−2) ∈ C is equivalent to showing that:

(cn−1, c0, . . . , cn−2) = (fm′(β
0), fm′(β

1), . . . , fm′(β
n−1))

for some m′ = (m′0, . . . ,m
′
k−1) ∈ Fk

q .

Consider m′ = (m′0, . . . ,m
′
k−1) where ∀j ∈ {0, 1, . . . , k − 1}, m′j = mj · β−j . Clearly, m′ ∈ Fk

q . Then,
∀i ∈ {1, 2, . . . , n}, we have:

fm′(β
i) =

k−1∑
j=0

m′j(β
i)j =

k−1∑
j=0

mj · β−j · (βi)j = mj(β
i−1)j = fm(βi−1)

and fm′(β0) = fm′(β
q−1) = fm′(β

n) = fm(βn−1).
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Therefore,

(cn−1, c0, . . . , cn−2) = (fm(βn−1), fm(β0), . . . , fm(βn−2))

= (fm′(β
0), fm′(β

1), . . . , fm′(β
n−1))

So, (cn−1, c0, . . . , cn−2) ∈ C, hence C is cyclic.

4. The Hadamard code has a nice property that it can be locally decoded. Let CHad,r : {0, 1}r →
{0, 1}2r be the encoding function of the Hadamard code. Suppose you are interested only in the i-th
bit xi of the message x ∈ {0, 1}r. The challenge is that you only have access to y ∈ {0, 1}2r such
that ∆(CHad,r(x), y) ≤ 2r

10
and you would like to look only at a few bits of y. Show that by querying

only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine
xi correctly with probability 4/5 (the probability here is over the choice of the queries, in particular
x, y and i are fixed).

Hint: You might want to query y at the position labelled by u ∈ {0, 1}r at random and the position
u+ ei where ei ∈ {0, 1}r is the binary representation of i

A: We will query yu and yu+ei , where yu and yu+ei is the bit of y corresponds to the decimal value of u and u+ ei
respectively, with u is chosen randomly over {0, 1}r and ei = (0 . . . 010 . . . 0) (with 1 at the i-th position).

Note that every k-th bit of CHad,r(x) corresponds to one of k ∈ {0, 1}r and the message x, i.e. we can write:

CHad,r(x)k = x� k

with x� k = (
∑r

i=1 xi · ki) (mod 2).

Now notice that:

(x� u) + (x� (u+ ei)) ≡ (x� u) + (x� u) + (x� ei)
≡ (x� ei)(mod 2)

≡ xi

So we can determine xi correctly if and only if we can determine both (x� u) and (x� (u+ ei)) correctly.

Note that u is picked randomly (also uniformly) from the set {0, 1}r. Then, since we have: ∆(CHad,r(x), y) ≤ 2r

10 ,
we know that:

P(x� u is wrong) = P(x� (u+ ei) is wrong) ≤ 1

10

Therefore:

P(xi is correct) = 1− P(x� u is wrong or x� (u+ ei) is wrong)

≥ 1− (P(x� u is wrong) + P(x� (u+ ei) is wrong))

≥ 1− (
1

10
+

1

10
)

=
4

5

So, P(we can determine xi correctly) ≥ 4
5 .
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