HW 2 - CORRECTION

1 Homework 2

1. Let $A_q(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $(n, k, d)_q$). Determine $A_2(3, d)$ for all integers $d \ge 1$.

A: We know that $\forall [n, k, d]_q$ – code, we have:

$$k \le n - \log_q \left(\sum_{i=1}^{\lfloor \frac{d-1}{2} \rfloor} {n \choose i} (q-1)^i \right)$$

- Since n = 3, for d > 3, we have A₂(3, d) = 0 (cannot have two words with 3 bits but having Hamming distance d > 3).
- For d = 1, we have $k \le 3$, and we can achieve the equality by taking $C = \{0, 1\}^3$, so we can encode all words with Hamming distance 1, and $A_2(3, 1) = 3$.
- For d = 2, we have k ≤ 3, but k ≠ 3 because we cannot encode all 3-bits codewords with Hamming distance 2. But we can achieve k = 2 by taking C = {000,011,101,110}. So, A₂(3,2).
- For d = 3, then $k \le 1$, and it is achievable by taking $C = \{000, 111\}$, so $A_2(3, 3) = 1$.
- 2. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_2$ provided that

$$2^{n-k} > 1 + \binom{n-1}{1} + \dots + \binom{n-1}{d-2}.$$
 (1)

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7, 4, 3]_2$ Hamming code.

A: Consider \mathbb{F}_2^{n-k} as the set of column vector of length (n-k) over \mathbb{F}_2 . Construct parity check matrix H as follows.

- 1. Begin with $H = h_1$, where h_1 is any nonzero vector in \mathbb{F}_2^{n-k} .
- 2. $\forall i \geq 2$, choose h_i as the vector in $\mathbb{F}_2^{n-k} \setminus H$ such that h_i cannot be written as a linear combination of (d-2) or fewer of the vectors in H (recall that $H = \{h_1, \ldots, h_{i-1}\}$).
- 3. Set $H \leftarrow H \cup \{h_i\}$.
- 4. Repeat step (2) until n column vectors are constructed (i.e. |H| = n).

Now, we show that the matrix H composed by the column vectors $\{h_1, \ldots, h_n\}$ is the PCM of an $[n, k, d]_2$ -linear code.

In the end of the procedure, we have matrix H of size $(n - k) \times n$, and every subset of (d - 1) vectors of $\{h_1, \ldots, h_n\}$ are linearly independent. Moreover, H is a full-rank matrix, i.e. dim(H) = n - k.

So we can construct an $[n, k, d]_2$ -linear code by taking the generator matrix G = kernel(H) which is of size $k \times n$, and dim(G) = k, and defining $C = x \cdot G$, with x is taken over \mathbb{F}_2^k .

Since any subset of (d-1) column vectors of H are linearly independent, then we know that the minimum distance of C is d. So, C is an $[n, k, d]_2$ -linear code.

Now we show that H can be constructed if:

$$2^{n-k} > 1 + \binom{n-1}{1} + \dots + \binom{n-1}{d-2}$$
(2)

Assume that by running the algorithm we have found vectors $\{h_1, \ldots, h_j\}$ with $1 \le j \le n-1$. The number of different linear combinations of (d-2) of fewer of the set $\{h_1, \ldots, h_j\}$ is:

$$\sum_{i=0}^{d-2} \binom{j}{i} \le \sum_{i=0}^{d-2} \binom{n-1}{i} = \binom{n-1}{1} + \dots + \binom{n-1}{d-2}$$

So if the inequality 2 holds, we know that there is a vector $h_{j+1} \in \mathbb{F}_2^{n-k}$ which is not a linear combination of (d-2) or fewer vectors of $\{h_1, \ldots, h_j\}$ (i.e. h_{j+1} is independent of $\{h_{i_1}, \ldots, h_{i_k}\}$; $k \leq d-2$).

Thus, by induction on j, we can conclude that we can obtain $\{h_1, \ldots, h_n\}$.

For the particular case of $[7, 4, 3]_2$ -Hamming code, we have $2^{7-4} > 1 + \binom{7-1}{1}$ (so, we can use the algorithm to get its PCM).

3. A well-studied family of codes is called cyclic codes. Their defining property is that if $(c_0, \ldots, c_{n-1}) \in C$ then $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$. Show that if β is a generator of \mathbb{F}_q^* and $\alpha_i = \beta^{i-1}$ with n = q - 1, then the $[n, k]_q$ Reed-Solomon code is cyclic.

A: Since β is the generator of \mathbb{F}_q^* , $\{1, 2, \dots, q-1\} = \{1, \beta^1, \beta^2, \dots, \beta^{q-2}\}$. Moreover, $\beta^{q-1} = \beta^0 = 1$, and in general $\beta^i = \beta^i + k(q-1)$; $k \in \mathbb{Z}$.

To prove that $C = [n, k]_q$ R-S is cyclic, we need to show that:

$$\forall (c_0, c_1, \dots, c_{n-1}) \in C, \text{ then } (c_{n-1}, c_0, \dots, c_{n-2}) \in C$$

Indeed: $\forall (c_0, c_1, \dots, c_{n-1}) \in C$, we can write it as:

$$(c_0, c_1, \dots, c_{n-1}) = (f_m(\alpha_1), \dots, f_m(\alpha_n))$$

= $(f_m(\beta^0), \dots, f_m(\beta^{n-1}))$

where $f_m(x) = \sum_{j=0}^{k-1} m_j x^j$, $\forall x \in \{\beta^0, \dots, \beta^{n-1}\}$ for some $m = (m_0, \dots, m_{k-1}) \in \mathbb{F}_q^k$.

Then, showing $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$ is equivalent to showing that:

$$(c_{n-1}, c_0, \dots, c_{n-2}) = (f_{m'}(\beta^0), f_{m'}(\beta^1), \dots, f_{m'}(\beta^{n-1}))$$

for some $m' = (m'_0, \ldots, m'_{k-1}) \in \mathbb{F}_q^k$.

Consider $m' = (m'_0, ..., m'_{k-1})$ where $\forall j \in \{0, 1, ..., k-1\}$, $m'_j = m_j \cdot \beta^{-j}$. Clearly, $m' \in \mathbb{F}_q^k$. Then, $\forall i \in \{1, 2, ..., n\}$, we have:

$$f_{m'}(\beta^i) = \sum_{j=0}^{k-1} m'_j(\beta^i)^j = \sum_{j=0}^{k-1} m_j \cdot \beta^{-j} \cdot (\beta^i)^j = m_j(\beta^{i-1})^j = f_m(\beta^{i-1})^j$$

and $f_{m'}(\beta^0) = f_{m'}(\beta^{q-1}) = f_{m'}(\beta^n) = f_m(\beta^{n-1}).$

Therefore,

$$(c_{n-1}, c_0, \dots, c_{n-2}) = (f_m(\beta^{n-1}), f_m(\beta^0), \dots, f_m(\beta^{n-2}))$$
$$= (f_{m'}(\beta^0), f_{m'}(\beta^1), \dots, f_{m'}(\beta^{n-1}))$$

So, $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$, hence C is cyclic.

4. The Hadamard code has a nice property that it can be locally decoded. Let $C_{Had,r} : \{0,1\}^r \to \{0,1\}^{2^r}$ be the encoding function of the Hadamard code. Suppose you are interested only in the *i*-th bit x_i of the message $x \in \{0,1\}^r$. The challenge is that you only have access to $y \in \{0,1\}^{2^r}$ such that $\Delta(C_{Had,r}(x), y) \leq \frac{2^r}{10}$ and you would like to look only at a few bits of y. Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine x_i correctly with probability 4/5 (the probability here is over the choice of the queries, in particular x, y and i are fixed).

Hint: You might want to query y at the position labelled by $u \in \{0, 1\}^r$ at random and the position $u + e_i$ where $e_i \in \{0, 1\}^r$ is the binary representation of i

A: We will query y_u and y_{u+e_i} , where y_u and y_{u+e_i} is the bit of y corresponds to the decimal value of u and $u+e_i$ respectively, with u is chosen randomly over $\{0,1\}^r$ and $e_i = (0 \dots 010 \dots 0)$ (with 1 at the *i*-th position).

Note that every k-th bit of $C_{Had,r}(x)$ corresponds to one of $k \in \{0,1\}^r$ and the message x, i.e. we can write:

$$C_{Had,r}(x)_k = x \odot k$$

with $x \odot k = (\sum_{i=1}^r x_i \cdot k_i) \pmod{2}$.

Now notice that:

$$(x \odot u) + (x \odot (u + e_i)) \equiv (x \odot u) + (x \odot u) + (x \odot e_i)$$
$$\equiv (x \odot e_i) (mod \ 2)$$
$$\equiv x_i$$

So we can determine x_i correctly if and only if we can determine both $(x \odot u)$ and $(x \odot (u + e_i))$ correctly.

Note that u is picked randomly (also uniformly) from the set $\{0,1\}^r$. Then, since we have: $\Delta(C_{Had,r}(x), y) \leq \frac{2^r}{10}$, we know that:

$$\mathbb{P}(x \odot u \text{ is wrong}) = \mathbb{P}(x \odot (u + e_i) \text{ is wrong}) \le \frac{1}{10}$$

Therefore:

$$\mathbb{P}(x_i \text{ is correct}) = 1 - \mathbb{P}(x \odot u \text{ is wrong or } x \odot (u + e_i) \text{ is wrong})$$

$$\geq 1 - (\mathbb{P}(x \odot u \text{ is wrong}) + \mathbb{P}(x \odot (u + e_i) \text{ is wrong}))$$

$$\geq 1 - (\frac{1}{10} + \frac{1}{10})$$

$$= \frac{4}{5}$$

So, $\mathbb{P}(we \ can \ determine \ x_i \ correctly) \geq \frac{4}{5}$.