HW 4: Error-correcting codes

(due December 13th, before tutorial)

1. Let $A_{q}(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $\left.(n, k, d)_{q}\right)$. Determine $A_{2}(3, d)$ for all integers $d \geq 1$.
2. Suppose C is a $(n, k, d)_{2}$-code with d odd. Construct using C a code C^{\prime} that is a $(n+1, k, d+1)_{2}$-code.
3. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_{2}$ provided that

$$
\begin{equation*}
2^{n-k}>1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2} \tag{1}
\end{equation*}
$$

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7,4,3]_{2}$ Hamming code.
4. The Hadamard code has a nice property that it can be locally decoded. Let $C_{H a d, r}:\{0,1\}^{r} \rightarrow\{0,1\}^{2^{r}}$ be the encoding function of the Hadamard code. Suppose you are interested only in the i-th bit x_{i} of the message $x \in\{0,1\}^{r}$. The challenge is that you only have access to $y \in\{0,1\}^{2^{r}}$ such that $\Delta\left(C_{H a d, r}(x), y\right) \leq \frac{2^{r}}{10}$ and you would like to look only at a few bits of y. Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine x_{i} correctly with probability $4 / 5$ (the probability here is over the choice of the queries, in particular x, y and i are fixed).
Hint: You might want to query y at the position labelled by $u \in\{0,1\}^{r}$ at random and the position $u+e_{i}$ where $e_{i} \in\{0,1\}^{r}$ is the binary representation of i.

