HW 2: Shannon entropy and data compression

(due Sept 26th, before tutorial)

1. Show that $H(X \mid Y)=0$ implies that X is a (deterministic) function of Y.
2. We showed in class that the optimal $H(X)-\log _{2}\left(1+\left\lfloor\log _{2}|\mathcal{X}|\right\rfloor\right) \leq \mathbf{E}\left\{\left|C^{*}(X)\right|\right\} \leq$ $H(X)$. Show that there is a distribution P_{X} such that the lower bound holds with equality. (We want a nontrivial example, i.e., $|\mathcal{X}|>1$.)
3. Huffman's algorithm constructs a prefix code C_{H} given a distribution $\left(p_{1}, \ldots, p_{m}\right)$ on the symbols $\{1, \ldots, m\}$. The objective of this problem is to show that the expected length $L\left(C_{\mathrm{H}}\right)$ is minimum among all the prefix codes. Huffman's algorithm constructs a binary tree as follows. The algorithm starts with independent nodes labeled by the elements $1, \ldots, m$ and the corresponding probability. At the beginning, all the nodes or marked unvisited. At each step, we choose the two unvisited nodes u, v with minimum value of p_{u}, p_{v}. We create a new node w with an assigned probability $p_{w}=p_{u}+p_{v}$ which is the parent of u and $v . w$ is marked as unvisited and u, v are marked as visited. The step is repeated $m-1$ times until we have one unvisited node (the root) with an assigned probability 1 . To every path from the root to a leaf of the tree, we assign a bitstring where a "left" edge is read as 0 and a "right" edge is read as 1 . The obtained tree defines a code in the following way: for any $x \in\{1, \ldots, m\}, C_{\mathrm{H}}(x)$ is the bitstring corresponding to the path from the root to x.
(a) Show that for any optimal code, it can be transformed to one with the following property: the two longest codewords correspond to the two least likely symbols, and they have the same length and they only differ in the last bit.
(b) Conclude that C_{H} achieves the optimal expected length for $\left(p_{1}, \ldots, p_{m}\right)$.
4. Find a distribution $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ on elements $\{1,2,3,4\}$ such that there are two prefix-free codes with different encoding lengths $\left\{\ell_{i}\right\}_{1 \leq i \leq 4}$ and $\left\{\ell_{i}^{\prime}\right\}_{1 \leq i \leq 4}$ while both codes minimize the average length $\sum_{i} p_{i} \ell_{i}$.
