
15 - Theory of P, NP, NP-Complete

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 March 2022

1 / 44 Theory of P, NP, NP-Complete



Table of contents

Turing machine

P problem

NP problem

NP-Complete problem

NP-Hard problem

2 / 44 Theory of P, NP, NP-Complete



Turing machine

3 / 44 Theory of P, NP, NP-Complete



Turing Machine (1)

Turing Machine:

A Turing machine is a mathematical model of computation that defines

an abstract machine that manipulates symbols on a strip of tape

according to a table of rules. Despite the model’s simplicity, given any

computer algorithm, a Turing machine capable of implementing that

algorithm’s logic can be constructed. (wikipedia)

4 / 44 Theory of P, NP, NP-Complete



Turing Machine (2)

Figure: Alan Mathison Turing, (23 June 1912 7 June 1954), an English
mathematician, logician, cryptanalyst, and computer scientist.

5 / 44 Theory of P, NP, NP-Complete



Deterministic algorithm (1)

Definition

A deterministic algorithm is an algorithm that, given a particular input,
will always produce the same output, with the underlying machine always
passing through the same sequence of states

6 / 44 Theory of P, NP, NP-Complete



Deterministic algorithm (2)

Example: Sequential search.
Given an array of n integers (a1, a2, . . . , an). We want to find the
maximum of the array.

Algorithm 1 Finding maximum of an array of integers

1: procedure Max(A[1..n])
2: max ← a1
3: for i = 2 to n do
4: if ai > max then
5: max ← ai
6: end if
7: end for
8: end procedure

Time complexity: O(n)

7 / 44 Theory of P, NP, NP-Complete



Nondeterministic algorithm (1)

Definition

A nondeterministic algorithm is a two-stage procedure that takes as its
input an instance I of a decision problem and does the following.

Nondeterministic (“guessing”) stage: An arbitrary string S is
generated that can be thought of as a candidate solution to the
given instance I .

Deterministic (“verification”) stage: A deterministic algorithm takes
both I and S as its input and outputs yes if S represents a solution
to instance I . (If S is not a solution to instance I , the algorithm
either returns no or is allowed not to halt at all.)

A nondeterministic algorithm solves a decision problem if and only if
“for every yes instance of the problem it returns yes on some execution”,
i.e. we require a nondeterministic algorithm to be capable of ’guessing’ a
solution at least once and to be able to verify its validity. (Also, no ’yes’
output on instance with ’no’ answer)

8 / 44 Theory of P, NP, NP-Complete



Nondeterministic algorithm (2)

9 / 44 Theory of P, NP, NP-Complete



Nondeterministic algorithm (3)

Example: Nondeterministic Turing Machine

10 / 44 Theory of P, NP, NP-Complete



Decidability and undecidability

11 / 44 Theory of P, NP, NP-Complete



Decision problems

Decision problems are problems with yes/no answers.

12 / 44 Theory of P, NP, NP-Complete



Example of decision problems

1. Hamiltonian cycle problem: Determine whether a given graph
has a Hamiltonian circuit a path that starts and ends at the same
vertex and passes through all the other vertices exactly once.

2. Decision version of TSP problem: Given a positive integer `, the
task is to decide whether the graph has a tour of at most `.

13 / 44 Theory of P, NP, NP-Complete



Decidable & undecidable problems

Does every decision problem can be solved in polynomial time?

Definition

Decision problems that can be solved by an algorithm is called decidable
problems. Decision problems that cannot be solved at all by any
algorithm is called undecidable problems.

Decidable problem: if there is a Turing machine which halts on
every input with an answer “yes” or “no”

Undecidable problem: if we cannot construct an algorithm that
can answer the problem correctly in finite time, i.e. there will always
be a condition that will lead the Turing Machine into an infinite
loop without providing an answer at all

14 / 44 Theory of P, NP, NP-Complete



Halting problem (1)

Example of decidable problems:

Example of undecidable problems: Halting problem

Problem (Halting problem (Turing, 1936))

Given a computer program and an input to it, determine whether the
program will halt on that input or continue working indefinitely on it.

15 / 44 Theory of P, NP, NP-Complete



Halting problem (2)

Halting problem is undecidable.

Proof.
For a contradiction, assume that A is an algorithm that solves the halting
problem. That is, for any program P and input I :

A(P, I ) =

{
1, if program P halts on input I

0, if program P does not halt on input I

Consider program P as an input to itself and use the output of algorithm A for
pair (P,P) to construct a program Q as follows:

Q(P) =

{
halts, if A(P,P) = 0, i.e., if program P does not halt on input P

does not halt, if A(P,P) = 1, i.e., if program P halts on input P

Substituting Q for P gives:

Q(Q) =

{
halts, if A(Q,Q) = 0, i.e., if program Q does not halt on input Q

does not halt, if A(Q,Q) = 1, i.e., if program Q halts on input Q

Hence, this is a contradiction because neither of the two outcomes for program

Q is possible.

16 / 44 Theory of P, NP, NP-Complete



Tractability

17 / 44 Theory of P, NP, NP-Complete



P problems

Definition (Polynomial problems)

Class P is a class of decision problems that can be solved in
polynomial time by (deterministic) algorithms. This class of
problems is called polynomial.

Example of polynomials problems

Searching → T (n) = O(n),T (n) = O(log n)

Sorting → T (n) = O(n2),T (n) = O(n log n)

Matrix multiplication → T (n3) = O(n),T (n) = O(n2.83)

Example of non-polynomials problems

TSP → T (n) = O(n!)

Integer knapsack problem → T (n) = O(2n)

Graph coloring problem, etc.

18 / 44 Theory of P, NP, NP-Complete



Tractable & intractable problems

Definition

We say that an algorithm solves a problem in polynomial time if its
worst-case time efficiency belongs to O(p(n)) where p(n) is a polynomial
of the problems input size n.

(Note that since we are using big-oh notation here, problems solvable in,
say, logarithmic time are solvable in polynomial time as well.)

Problems that can be solved in polynomial time are called tractable, and
problems that cannot be solved in polynomial time are called intractable.

Polynomial-time: O(nk), O(1), O(n log n)

Not in polynomial-time: O(2n), O(n!), O(nn)

19 / 44 Theory of P, NP, NP-Complete



Decidable but intractable problems

Hamiltonian circuit problem: Determine whether a given graph has a
Hamiltonian circuit a path that starts and ends at the same vertex and
passes through all the other vertices exactly once.

Traveling salesman problem: Find the shortest tour through n cities with
known positive integer distances between them.

Knapsack problem: Find the most valuable subset of n items of given
positive integer weights and values that fit into a knapsack of a given
positive integer capacity.

Partition problem Given n positive integers, determine whether it is
possible to partition them into two disjoint subsets with the same sum.

Graph-coloring problem: For a given graph, find its chromatic number,
which is the smallest number of colors that need to be assigned to the
graphs vertices so that no two adjacent vertices are assigned the same
color.

Integer linear programming problem: Find the maximum (or minimum)
value of a linear function of several integer-valued variables subject to a
finite set of constraints in the form of linear equalities and inequalities.

20 / 44 Theory of P, NP, NP-Complete



NP problems

21 / 44 Theory of P, NP, NP-Complete



NP problems

NP: non-deterministic polynomial (not “non-polynomial time
algorithm”)

Definition (Nondeterministic polynomial algorithms)

Non-deterministic polynomial-time algorithm is a non-deterministic
algorithm whose verification stage can be done in polynomial time.

Poly-time verification means:

Provided a solution candidate, we can check whether the
answer is correct/wrong in poly-time.

Note that this is equivalent to “finding solution in poly-time”

Example: In decision-version of TSP, given TSP solution of a
graph, a positive integer k , we can check in poly-time if the
solution is a TSP and has weight ≤ k .

22 / 44 Theory of P, NP, NP-Complete



NP problems

Definition (Class NP)

Class NP is the class of decision problems that can be solved by
nondeterministic polynomial algorithms. This class of problems is
called nondeterministic polynomial.

Remark.

Most decision problems are in NP, and P ⊆ NP

because, if a problem is in P, we can use the deterministic
poly-time algorithm that solves it in the verification-stage of a
nondeterministic algorithm that simply ignores string S
generated in its nondeterministic (“guessing”) stage.

NP 6⊆ P, because some problems are in NP but not in P.

Examples: Hamiltonian circuit problem, decision version of
TSP, knapsack, and graph coloring problems, etc.

Some (rare) problems are not in NP. Example: Halting
problem.

23 / 44 Theory of P, NP, NP-Complete



Is P = NP?

The most important open question of theoretical computer science:

P
?
= NP

P = NP would imply that each of many hundreds of difficult
combinatorial decision problems can be solved by a poly-time
algorithm (this is still open despite the efforts of many computer
scientists over many years).

Many well-known decision problems are known to be
“NP-complete” → more doubts on the possibility that P = NP.

24 / 44 Theory of P, NP, NP-Complete



Millennium Prize Problems

Seven well-known mathematical problems selected by the Clay

Mathematics Institute in 2000. The Clay Institute has pledged a US$1

million prize for the correct solution of any of the problems.

1 Birch and Swinnerton-Dyer conjecture

2 Hodge conjecture

3 Navier-Stokes existence and smoothness

4 P versus NP problem

5 Poincaré conjecture (solved)

6 Riemann hypothesis

7 Yang-Mills existence and mass gap

25 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (1): definition

Informally, an NP-complete problem is a problem in NP that is as
difficult as any other problem in this class because, by definition, any
other problem in NP can be reduced to it in polynomial time.

Figure: Notion of an NP-complete problem. Polynomial-time reductions of NP
problems to an NP-complete problem are shown by arrows.

26 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (2): polynomial reduction

Definition (Polynomially reducible problems)

A decision problem D1 is said to be polynomially reducible to a decision
problem D2, if there exists a function t that transforms instances of D1

to instances of D2 such that:

t maps all yes instances of D1 to yes instances of D2, and all no
instances of D1 to no instances of D2

t is computable by a poly-time algorithm, i.e. t ∈ NP

Implication: If a problem D1 is polynomially reducible to some problem
D2 that can be solved in poly-time, then problem D1 can also be solved
in poly-time.

D1 D2
in P

reduced to

in P

27 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (3): NPC definition

Definition (NP-Complete problem)

A decision problem D is said to be NP-complete if:

it belongs to class NP

every problem in NP is polynomially reducible to D

Figure: Proving NP-completeness by reduction

If X is NPC and X is
poly-time solvable, then
all NP problems are
poly-time solvable;

i.e. if X is poly-time
solvable, then P = NP.

28 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (3): polynomial reduction

List of NP-Complete problems

Boolean satisfiability problem (SAT)

Decision-version TSP

Hamiltonian cycle problem

Partition problem

Clique problem

Decision-version of graph coloring problem

Vertex cover problem

Decision-version of Knapsack problem

29 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (4): polynomial reduction

Properties of NP-complete problems

A problem X is NPC if any problem in NP can be reduced
(transformed) to X in poly-time.

Two problems X and Y in NPC can be reduced one to each
other in poly-time.

X can be reduced to Y in poly-time
Y can be reduced to X in poly-time

30 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (5): polynomial reduction

How to show that a problem X is NPC?

Show that X is NP

Choose a problem Y from a collection of NPC problems

Construct a reduction algorithm that reduces an instance of
problem Y to an instance of problem Z.

31 / 44 Theory of P, NP, NP-Complete



NP-Complete problems (6): polynomial reduction

Example: The Hamiltonian circuit problem is polynomially
reducible to the decision version of TSP

Hamiltonian circuit problem: Determine whether a given graph
has a Hamiltonian circuit – a path that starts and ends at the same
vertex and passes through all the other vertices exactly once.

TSP-decision problem: Given a graph and distance between pair
of vertice, and a positive integer `, the task is to decide whether the
graph has a tour of at most `.

32 / 44 Theory of P, NP, NP-Complete



Hamiltonian cycle problem
polynomially reducible−−−−−−−−−−−→ TSP-decision

We map a graph G of a given instance of the Hamiltonian circuit problem
to a complete weighted graph G representing an instance of the TSP.

Reduction:

Assign 0 as the weight to each edge in G and adding an edge of
weight 1 between any pair of nonadjacent vertices in G .

E F

D
C

A

B1

1

1

1

1
1

0

0

0

0

0

0

0

0
0

E F

D
C

A

B

G′G

33 / 44 Theory of P, NP, NP-Complete



Hamiltonian cycle problem
polynomially reducible−−−−−−−−−−−→ TSP-decision

G has Hamiltonian cycle if there exists a cycle in G ′ passing
through all vertices exactly once, and that has a length ≤ 0
(i.e. has a solution for the instance of TSP where k = 0).

1 If there is a cycle that passes through all vertices exactly
once, and has length ≤ 0 in G ′, the cycle contains only
edges that were originally present in G . (The new edges in G ′

have weight 1 and hence cannot be part of a cycle of length
≤ 0.)

⇒ There exists a Hamiltonian cycle in G

2 If there exists a Hamiltonian cycle in G , it forms a cycle in
G ′ with length = 0, since a weights of all the edges is 0.

⇒ There exists a solution for TSP in G ′ with length ≤ 0.

34 / 44 Theory of P, NP, NP-Complete



Hamiltonian cycle problem
polynomially reducible−−−−−−−−−−−→ TSP-decision

Example:

E F

D
C

A

B1

1

1

1

1
1

0

0

0

0

0

0

0

0
0

G′

Figure: G ′ has a cycle passing through all vertices exactly once with
length ≤ 0.

35 / 44 Theory of P, NP, NP-Complete



Hamiltonian cycle problem
polynomially reducible−−−−−−−−−−−→ TSP-decision

Example:

E F

D
C

A

B

G

Figure: G ′ has a cycle passing through all vertices. This is a Hamiltonian
cycle in G

36 / 44 Theory of P, NP, NP-Complete



P , NP , and NP-Complete diagram

37 / 44 Theory of P, NP, NP-Complete



CNF-satisfiability problem

x1, x2, x3, and x4 are Boolean variables to be assigned (value 0 or 1)

¬ means negation (logical not)

∧ means conjunction (logical and)

∨ means disjunction (logical or)

A literal is a variable or its negation, e.g.: xi and ¬xi
A clause is a disjunction (∧) of literals, e.g.: xi ∨ xj

Conjunctive Normal Form (CNF) is a conjunction of clauses

Example: (x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x4)

38 / 44 Theory of P, NP, NP-Complete



CNF-satisfiability problem

Definition

The Satisfiability Problem (SAT) is a classic combinatorial
problem. Given a Boolean formula of n variables:

f (x1, x2, . . . , xn)

The problem is to find such values of the variables, on which
the formula takes on the value True.

The CNF Satisfiability Problem (CNF-SAT) is a version of the
Satisfiability Problem, where the Boolean formula above is
specified in the Conjunctive Normal Form (CNF).

39 / 44 Theory of P, NP, NP-Complete



CNF-satisfiability problem

Input: Expression over Boolean variables in conjunctive normal
form (CNF).

Question: Is the expression satisfiable? i.e., can we give each
variable a value (true or false) such that the expression becomes
true?

Example: (x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x4)

The formula is satisfiable because on x1 = True, x2 = False,
x3 = False, and x4 = True, it takes on the value True.

Check it!

40 / 44 Theory of P, NP, NP-Complete



CNF-satisfiability problem

Input: Expression over Boolean variables in conjunctive normal
form (CNF).

Question: Is the expression satisfiable? i.e., can we give each
variable a value (true or false) such that the expression becomes
true?

Example: (x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x1 ∨ x4)

The formula is satisfiable because on x1 = True, x2 = False,
x3 = False, and x4 = True, it takes on the value True.

Check it!

40 / 44 Theory of P, NP, NP-Complete



CNF-satisfiability problem

Theorem (Cook-Levin Theorem)

CNF-Satisfiability is NP-complete.

Proof. See
https://en.wikipedia.org/wiki/CookLevin_theorem

Most well known is Cooks proof, using Turing machine
characterization of NP.

It design a Turing machine that verifies yes-instances of SAT

41 / 44 Theory of P, NP, NP-Complete

https://en.wikipedia.org/wiki/CookLevin_theorem


NP-Hard problems

42 / 44 Theory of P, NP, NP-Complete



Definition (NP Hard problem)

A decision problem H is NP-hard if for every problem L in NP,
there is a polynomial-time many-one reduction from L to H.

A problem is NP-hard if an algorithm for solving it can be
translated into one for solving any NP-problem.

NP-hard therefore means “at least as hard as any
NP-problem” although it might, in fact, be harder.

NP-hard problems often have exponential-time complexity.

Example: (Non-decision problem) of TSP

Remark. If P 6= NP, then NP-hard problems could not be solved
in polynomial time.

43 / 44 Theory of P, NP, NP-Complete



Diagram of complexity classes

44 / 44 Theory of P, NP, NP-Complete


