
13 - Dynamic programming

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 March 2022

1 / 35 Dynamic programming



Table of contents

Principal of Dynamic programming

Basic examples

More advanced application of dynamic programming

Knapsack problem and Memory functions
Shortest path problem
Traveling salesman problem
Optimal binary search tree

2 / 35 Dynamic programming



Figure: Richard Ernest Bellman (1920-1984)

3 / 35 Dynamic programming



Principal of dynamic programming (1)

Programming does not refer to computer programming, it
means “planning”

Dynamic is used to capture the time-varying aspect of the
problems

Dynamic programming is a problem solving method by outlining
the solution into a set of stages, such that the solution of the
problem can be seen as a sequence of decisions.

4 / 35 Dynamic programming



Principal of dynamic programming (2)

Usually applied for optimization problems
(maximization/minimization).

Typically, these subproblems arise from a recurrence relating a
given problems solution to solutions of its smaller subproblems.

Rather than solving overlapping subproblems again and again,
dynamic programming suggests solving each of the smaller
subproblems only once and recording the results in a table from
which a solution to the original problem can then be obtained.

5 / 35 Dynamic programming



Fibonacci numbers revisited

Recall that Fibonacci sequence is defined as follows.

F (n) =


1, n = 1

1, n = 2

F (n − 1) + F (n − 2), n ≥ 3

Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .

Recursive algorithm:

Algorithm 1 Fibonacci sequence recursively
1: procedure Fib(n)
2: if n ≤ 2 then return 1
3: end if
4: return (Fib(n − 1) + Fib(n − 2))

5: end procedure

6 / 35 Dynamic programming



Fibonacci numbers revisited

Figure: Tree of recursive calls for computing the 5th Fibonacci number by
the definition-based algorithm.

7 / 35 Dynamic programming



Fibonacci numbers revisited

How to handle overlapping computations?

Create a 1-dim array, and fill with the n + 1 consecutive values of
F (n), starting from F (0), and the last element will be F (n)

Algorithm 2 Fibonacci sequence iteratively
1: procedure Fib2(n)
2: F [0]← 0; F [1]← 1
3: for i ← 2 to n do
4: F (i)← F (i − 1) + F (i − 2)
5: end for
6: return F [n]

7: end procedure

8 / 35 Dynamic programming



Principle of optimality

A problem is said to satisfy the Principle of Optimality if an optimal
solution to any instance of an optimization problem is composed of
optimal solutions to its sub-instances; i.e. if the total solution is
optimal, then the part of solution up to step k is also optimal.

Implication: if we work from step k to step k + 1, we can use the
optimal solution up to step k , without going back to the initial state.

Cost at step k + 1 = cost at step k + cost from step k to step k + 1

9 / 35 Dynamic programming



Requirements

Generally, there are several requirements to apply dynamic
programming to a problem [Algorithm Design, Kleinberg and
Tardos]:

1 Solution to the original problem can be computed from
solutions to (independent) subproblems.

2 There are polynomial number of subproblems.

3 There is an ordering of the subproblems such that the solution
to a subproblem depends only on solutions to subproblems
that precede it in this order.

10 / 35 Dynamic programming



Dynamic Programming Steps

1 Define subproblems: This is the critical step. Usually the
recurrence structure follows naturally after defining the
subproblems.

2 Recurrence: Write solution to (sub)problem in forms of
solutions to smaller subproblems, i.e., recursion. This will give
the algorithm.

3 Correctness: Prove the recurrence is correct, usually by
induction.

4 Complexity: Analyze the runtime complexity. Usually:

runtime = #subproblems × timeToSolveEachOne

11 / 35 Dynamic programming



Two approaches

1 Forward/top-down approach

Calculations are carried out from stages 1, 2, . . . , n − 1, n.
Sequence of the decision variables: x1, x2, . . . , xn.

2 Backward/bottom-up approach

Calculations are carried out from stages n, n − 1, . . . , 2, 1.
Sequence of the decision variables: xn, xn−1, . . . , x1.

12 / 35 Dynamic programming



Some basic examples

1 Coin-row problem

2 Change-making problem

3 Coin-collecting problem

13 / 35 Dynamic programming



Coin-row problem

14 / 35 Dynamic programming



Coin-row problem (1)

Problem

There is a row of n coins whose values are some positive integers
c1, c2, . . . , cn, not necessarily distinct. The goal is to pick up the
maximum amount of money subject to the constraint that no two coins
adjacent in the initial row can be picked up.

Strategy: Let F (n): the maximum amount that can be picked up from
the row of n coins. How to derive a recursive formula for F (n)?

Two partitions of allowed coin selections:

1 Group that includes the last coin
2 Group that does not include the last coin

c1 c1 c1 cn−2 cn−1 cn

c1 c1 c1 cn−2 cn−1 cn

cn + F (n− 2)

F (n− 1)

15 / 35 Dynamic programming



Coin-row problem (2)

The recursive function:{
F (n) = max{cn + F (n − 2),F (n − 1)} for n > 1

F (0) = 0, F (1) = c1

So, F (n) can be computed as in Fibonacci sequence.

Algorithm 3 Coin row
1: procedure CoinRow(C [1..n])
2: F [0]← 0; F [1]← C [1]
3: for i ← 2 to n do
4: F (i)← max{C [i ] + F (i − 2),F (i − 1)}
5: end for
6: return F [n]

7: end procedure

16 / 35 Dynamic programming



Coin-row problem (3)

Figure: Solving the coin-row problem by dynamic programming for the coin
row 5, 1, 2, 10, 6, 2, with optimal solution {c1, c4, c6} and optimal value 17.

17 / 35 Dynamic programming



Change-making problem

18 / 35 Dynamic programming



Change-making problem (1)

Problem

Give change for amount n using the minimum number of coins of
denominations d1 < d2 < · · · < dm. Assume that we have availability of
unlimited quantities of coins for each of the m denominations
d1 < d2 < · · · < dm where d1 = 1.

Strategy: Let F (n): the minimum number of coins whose values add up

to n, and define F (0) = 0. How to derive a recursive formula for F (n)?

The amount n can only be obtained by adding one coin of denomination
dj to the amount n − dj for j = 1, 2, . . . ,m such that n ≥ dj .

Minimizing F (n − dj) + 1

The recursive function:{
F (n) = minj ;n≥dj F (n − dj) + 1 for n > 0

F (0) = 0

19 / 35 Dynamic programming



Change-making problem (2)

Algorithm 4 ChangeMaking
1: procedure MinCoinChange(D[1..m], n)
2: input: positive integer n, and array D[1..m] of increasing positive inte-

gers indicating the coin denominations where D[1] = 1
3: output: the minimum number of coins that add up to n

4: F [0]← 0
5: for i ← 1 to n do
6: temp ←∞; j ← 1
7: while j ≤ m and i ≥ D[j ] do
8: temp ← min(F [i − D[j ]], temp)
9: j ← j + 1

10: end while
11: F [i ]← temp + 1
12: end for
13: return F [n]

14: end procedure

20 / 35 Dynamic programming



Change-making problem (3)

Figure: Application of Algorithm MinCoinChange to amount n = 6 and coin
denominations 1, 3, and 4.

21 / 35 Dynamic programming



Coin-collecting problem

22 / 35 Dynamic programming



Coin-collecting problem (1)

Problem

Several coins are placed in cells of an n ×m board, no more than one coin per
cell. A robot, located in the upper left cell of the board, needs to collect as
many of the coins as possible and bring them to the bottom right cell.

On each step, the robot can move either one cell to the right or one cell
down from its current location.

When the robot visits a cell with a coin, it always picks up that coin.

Design an algorithm to find the maximum number of coins the robot can
collect and a path it needs to follow to do this.

Strategy: Let F (i , j) be the largest number of coins the robot can collect and
bring to the cell (i , j) in the ith row and jth column of the board.

(i , j) can be reached from cell (i − 1, j) (above) or cell (i , j − 1) (left).

For cell in the first row (resp. first column), assume that F (i − 1, j) = 0
(resp. F (i , j − 1) = 0).

23 / 35 Dynamic programming



Coin-collecting problem (2)

The recursive function:{
F (i , j) = max{F (i − 1, j),F (i , j − 1)}+ cij for 1 ≤ i < n, 1 ≤ j ≤ m

F (0, j) = 0 for 1 ≤ j ≤ m and F (i , 0) for 1 ≤ i ≤ n

Algorithm 5 Robot coin collection
1: procedure RobotCoinCollection(C [1..n, 1..m])
2: F [1, 1]← C [1, 1]
3: for j ← 2 to m do
4: F [1, j ]← F [1, j − 1] + C [1, j ]
5: end for
6: for i ← 2 to n do
7: F [i , 1]← F [i − 1, 1] + C [i , 1]
8: for j ← 2 to m do
9: F [i , j ]← max{F [i − 1, j ],F [i , j − 1]}+ C [i , j ]

10: end for
11: end for
12: return F [n,m]

13: end procedure

24 / 35 Dynamic programming



Coin-collecting problem (3)

Figure: (a) Coins to collect. (b) Dynamic programming algorithm results. (c)
Two paths to collect 5 coins, the maximum number of coins possible.

25 / 35 Dynamic programming



The knapsack problem
(dynamic-programming approach)

26 / 35 Dynamic programming



Knapsack problem

Problem

Given n items of known weights w1, . . . ,wn and values v1, . . . , vn and a
knapsack of capacity W . Find the most valuable subset of the items that
fit into the knapsack.

Strategy: Let F (i , j) be the value of an optimal solution to instance
defined by the first i items 1 ≤ i ≤ n,

with weights w1, . . . ,wi and values v1, . . . , vi

knapsack capacity j , with 1 ≤ j ≤W .

We consider whether the item i is included/not.

F (i− 1, j)2 3 i− 1 i

vi + F (i− 1, j − wi)

1

2 3 i− 1 i1

27 / 35 Dynamic programming



Knapsack problem

F (i , j) =

{
max{F (i − 1, j), vi + F (i − 1, j − wi )} if j − wi ≥ 0

F (i − 1, j), if j − wi < 0

with initial conditions:

F (0, j) = 0 for j ≥ 0 and F (i , 0) = 0 for i ≥ 0

Goal: to find F (n,W ), the maximal value of a subset of the n given
items that fit into the knapsack of capacity W , and an optimal subset.

Figure: Table for solving the knapsack problem by dynamic programming.

28 / 35 Dynamic programming



Knapsack problem

Example

Figure: Example of solving an instance of the knapsack problem by the
dynamic programming algorithm.

29 / 35 Dynamic programming



Memory functions
(study case in the Knapsack problem)

30 / 35 Dynamic programming



Memory functions principal

Dynamic programming solves problems that have a recurrence
relation.

Using the recurrences directly in a recursive algorithm has the
disadvantage that it solves common sub problem multiple times,
yielding exponential complexity.

The dynamic programming technique is has the disadvantage that
some of the sub-problems may not have been necessary to solve.

Our goal: to have the best of both approaches, i.e. all the necessary

sub-problem solved only once.

31 / 35 Dynamic programming



Memory functions principal

The technique uses a top-down approach, recursive algorithm,
with table of sub-problem solution.

Before determining the solution recursively, the algorithm
checks if the sub problem has already been solved by checking
the table.

If the table has a valid value then the algorithm uses the table
value else it proceeds with the recursive solution.

Recall the definition of F (i , j), the value of an optimal solution to
instance defined by the first i items with knapsack capacity j .

F (i , j) =

{
max{F (i − 1, j), vi + F (i − 1, j − wi )} if j − wi ≥ 0

F (i − 1, j), if j − wi < 0

32 / 35 Dynamic programming



Memory functions algorithm

Algorithm 6 MF Knapsack
1: procedure MFK(i , j)
2: input: i ∈ Z≥0 indicating the number of the first items being considered

and j ∈ Z≥0 indicating the knapsack capacity
3: output: The value of an optimal feasible subset of the first i items
4: variables: global variables input arrays weights Wt[1..n], values V[1..n],

and table F [0..n, 0..W ] whose entries are initialized with -1s except for row
0 and column 0 initialized with 0s.

5: if F [i , j ] < 0 then
6: if j < Wt[i ] then
7: value ← MFK(i − 1, j)
8: else
9: value ← max{MFK(i − 1, j),V[i ] + MFK(i − 1, j −Wt[i ])}

10: end if
11: F [i , j ]← value
12: end if
13: return F [i , j ]

14: end procedure

33 / 35 Dynamic programming



Memory functions example

Let’s implement the MFK procedure on the previous example:

Figure: Example of solving an instance of the knapsack problem by the
memory function algorithm.

34 / 35 Dynamic programming



Memory functions example

The step-by-step implementation of the algorithm is as follows:

N = 4,W = 5,w1 = 2,w2 = 1,w3 = 3,w4 = 2, v1 = 12, v2 = 10, v3 = 20, v4 = 15

V [4, 5] = max{V [3, 5], 15 + V [3, 3]} (since v4 = 15,w4 = 2, j = 15,w4 < j → apply 1st case)

V [3, 5] = max{V [2, 5], 20 + V [2, 2]}
V [3, 3] = max{V [2, 3], 20 + V [2, 0]}
V [2, 5] = max{V [1, 5], 10 + V [1, 4]}
V [2, 2] = max{V [1, 2], 10 + V [1, 1]}
V [2, 3] = max{V [1, 3], 10 + V [1, 2]}
V [2, 0] = V [1, 0] = 0 (since w2 = 1, j = 0,w2 > j → apply 2nd case)

V [1, 5] = max{V [0, 5], 12 + V [0, 3]} = max{0, 12 + 0} = 12

V [1, 4] = max{V [0, 4], 12 + V [0, 2]} = max{0, 12 + 0} = 12

V [1, 2] = max{V [0, 2], 12 + V [0, 0]} = max{0, 12 + 0} = 12

V [1, 1] = V [0, 1] = 0

V [1, 3] = max{V [0, 3], 12 + V [0, 1]} = max{0, 12 + 0} = 12

Now, substitute backwards:

V [2, 3] = max{V [1, 3], 10 + V [1, 2]} = max{12, 10 + 12} = 22

V [2, 2] = max{V [1, 2], 10 + V [1, 1]} = max{12, 10 + 0} = 12

V [2, 5] = max{V [1, 5], 10 + V [1, 4]} = max{12, 10 + 12} = 22

V [3, 3] = max{V [2, 3], 20 + V [2, 0]} = max{22, 20 + 0} = 22

V [3, 5] = max{V [2, 5], 20 + V [2, 2]} = max{22, 20 + 12} = 32

V [4, 5] = max{V [3, 5], 15 + V [3, 3]} = max{32, 15 + 22} = 37

35 / 35 Dynamic programming


