13 - Backtracking

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 llmu Komputer
Universitas Pendidikan Ganesha

Week 9-13 May 2022

1/26 Backtracking

Table of contents

@ Principal of Backtracking

@ State-space tree in backtracking algorithm
@ n-Queens problem

@ Hamiltonian circuit problem

@ Subset-sum problem

2/26 Backtracking

Principal of Backtracking

@ The exhaustive-search technique suggests generating all
candidate solutions and then identifying the one (or the ones)
with a desired property.

@ Backtracking algorithm improves exhaustive search.
@ In exhaustive search, all possible solutions are explored and
evaluated one-by-one

@ In backtracking, we do not examine all possibilities, only the
possibilities that lead to the solution. Other nodes that do not
lead to the solution are pruned.

Central idea:
To cut off a branch of the problems state-space tree, as soon as we
can deduce that it cannot lead to a solution.

Backtracking

Principal of Backtracking

dead end

\

?

/.

start — 7 —»?

dead end
%
%dead end

\ ‘//v dead end

success!

dead end

?

N

Figure: llustration of backtracking (sumber: https://miro.medium.com/)

Backtracking

https://miro.medium.com/

Representation of solution

@ Representation: an output can be thought of as n-tuple
(x1,%2,-..,%n) where each coordinate x; is an element of
some finite linearly ordered set S;.

@ Tuples: all solution tuples can be of the same length (the
n-queens and the Hamiltonian circuit problem) and of
different lengths (the Subset-sum problem).

Backtracking

Backtracking in DFS

Backtracking in DFS is used in solution-searching problems that
have many possibilities of solution.
The solution is obtained by looking in a depth-first approach
@ You do not have enough information to know the next step.
@ Each decision leads you to several/many new choices.

@ Several sequence of choices may be the problem’s solution.

In DFS, backtracking is used as a methodological way to try
several sequences of decision.

Backtracking

zs
[~
ol
a[~[e
w+]w
0 B
a~le
w[+]w
-
w|~[m
<=
wl<]= o[« o[« m[]e
w «le 7 O =[e I
~[|~ ~l- |~ w[<]~ alew
] ol
~ele
o ® N~
D a -~ PYPI
~e[-
n LR A"} - ~ Ll
- — Ldbl b Rl
/345 =
eI ~~
o0 . -
bl Bl N~ Ll
c ~H- aT=n «l]~
0= w[+]w
<[] ~Tel-
K / - o
O w<]" © ~ o~ [
<~
o] PN
- ~Te[-
b - ~ - m| <
= - o~ < w
- o
X © ole S/
O Y
N o< n ™ wn bl Bl s
T v
o e~ wTeTw
o) weol e\ v B nen
o[-
G m < o o < o
-~ w[+]=
(@) wle]~ ©
~- B we- Y,
(] ~ ~le -
P — wv
o w<]w w<]w <=
wle|~ o[~ m[o]~
m 2 DI S I I

State-space tree

State-space tree (1)

Backtracking can be seen as searching in a tree from the root to the

leaves (solution node).

State-space tree

It is a tree representing all the possible states (solution or non-solution)
of the problem from the root as an initial state to the leaf as a terminal
state.

A backtracking algorithm generates, explicitly or implicitly, a state-space
tree:

@ its nodes represent partially constructed tuples with the first /
coordinates defined by the earlier actions of the algorithm;

@ if such a tuple (xi, x2, ..., X;) is not a solution, the algorithm finds
the next element in S;;1 that is consistent with the values of
(x1, X2, ..., x;) and the problems constraints, and adds it to the
tuple as its (i + 1)st coordinate;

@ if such an element does not exist, the algorithm backtracks to
consider the next value of x;, and so on.

Backtracking

State-space tree (2)

@ Root represents an initial state before the search begins;

@ Internal nodes
e the nodes of the first level in the tree represent the choices
made for the first component of a solution;
e the nodes of the second level represent the choices for the
second component;
e and so on...;

@ Leaves represent either non-promising dead ends or complete
solutions found by the algorithm.

10/26 Backtracking

State-space tree (3)

@ oot

© internal node
@ dead node

O solution

Types of nodes in the state-space tree

@ Promising node: corresponds to a partially constructed
solution that may still lead to a complete solution;

@ Non-promising node: dead node

11/26 Backtracking

State-space tree (4)

The solution is searched by generating the state nodes, so that it
produces paths from the root to the leaves;

To generate the nodes, the DFS rule is followed;
The generated nodes are called live node;
The live node being expanded is called expand-node;

Each time the expand-node is expanded, the generated path gets
longer;

Function that is used to “kill" an expand-node is called bounding
function;

When a node is killed, then automatically all its children nodes are
pruned,;

If the paths-generation ends up with dead node, the searching is
backtrack to the parents nodes;

These parents nodes become the new expand-nodes;

The searching is stopped if we find a solution.

Backtracking

n-Queens problem

n-Queens problem

Problem

Place n queens on an n X n chessboard, so that no two queens
attack each other (by being in the same row, in the same column,
or in the same diagonal).

@ For n =1, the problem has a trivial solution
@ For n= 2,3, the problem has no solution
@ What if n =47

<+—— queen

<+—— queen?2

<+—— queen 3

A W ON =

<+—— queen4

14 /26 Backtracking

Algorithm

START

@ begin from the leftmost column
@ if all the queens are placed, return true/ print configuration

© check for all rows in the current column

@ if queen placed safely, mark row and column; and recursively
check if we approach in the current configuration, do we
obtain a solution or not

@ if placing yields a solution, return true

@ if placing does not yield a solution, unmark and try other rows

@ if all rows tried and solution not obtained, return false and
backtrack

END

Backtracking

n-Queens problem

0

a1
>
~

x#
o
X W
x &
o

X W
X
XN
=]

Q

Q

solution

Figure: State-space tree of solving the four-queens problem by backtracking; x
denotes an unsuccessful attempt to place a queen in the indicated column. The
numbers above the nodes indicate the order in which the nodes are generated.

Backtracking

n-Queens problem

@ We start with the empty board and then place queen 1 in the first

possible position of its row, which is in column 1 of row 1.

@ Then we place queen 2, after trying unsuccessfully columns 1 and 2, in

© 060 ©6 ©o

the first acceptable position for it, which is square (2, 3), the square in
row 2 and column 3.

This proves to be a dead end because there is no acceptable position for
queen 3.

So, the algorithm backtracks and puts queen 2 in the next possible
position at (2, 4).

Then queen 3 is placed at (3,2), which proves to be another dead end.

The algorithm then backtracks all the way to queen 1 and moves it to
(1,2).

Queen 2 then goes to (2,4), queen 3 to (3,1), and queen 4 to (4,3),
which is a solution to the problem.

17 /26 Backtracking

Other problems

Hamiltonian circuit problem

Problem

Given a connected graph G, find a Hamiltonian circuit in G. (Recall that
a Hamiltonian circuit is a circuit that visits all vertices of G exactly once.)

solution

(a) (b)

Figure: (a) Graph. (b) State-space tree for finding a Hamiltonian circuit.
The numbers above the nodes of the tree indicate the order in which the

nodes are generated.
19/26 Backtracking

Subset-sum problem (1)

Problem

Find a subset of a given set A = {a1,...,an} of n positive integers
whose sum is equal to a given positive integer d.

Example 1. Given A= {1,2,5,6,8}, d =9, the solution are:
{1,2,6} and {1, 8}.

Example 2: Given A= {3,5,6,7}, d = 15, the solution are:
{3,5,7}.

20/26 Backtracking

Subset-sum problem (2)

X X X X
9+7>15 3+7<15 11+7>15 bB+7<1b

Figure: Complete state-space tree of the backtracking algorithm applied
to the instance A= {3,5,6,7} and d = 15 of the Subset-sum problem.
The number inside a node is the sum of the elements already included in
the subsets represented by the node. The inequality below a leaf
indicates the reason for its termination.

Backtracking

Subset-sum problem (1)

A path from the root to a node on the ith level of the tree indicates
which of the first i numbers have been included in the subsets
represented by that node.

We record the value of s, the sum of these numbers, in the node.

@ If s is equal to d, we have a solution to the problem. We can either
report this result and stop or,

@ If all solutions need to be found, continue by backtracking to the
nodes parent.

@ If s is not equal to d, we can terminate the node as non-promising if
either of the following two inequalities holds:

s+ aj11 > d (the sum s is too large)
n
s+ Z aj < d (the sum s is too small)
Jj=i+1

Backtracking

Backtracking framework

Backtracking algorithm framework

Algorithm 1 Backtracking

1: procedure BACKTRACK(X]1..1])

2: input: X[1../]: the first i promising components of a solution
3: output: all the tuples representing the problem’s solution
4: if X[1..i]] is a solution then
5: write (X[1..1])
6: else

7 for each x € Siy1 consistent with X[1../] and the constraints do
8: X[i+1] «+ x
9: BACKTRACK(X[1..i + 1])
10: end for
11: end if

12: end procedure

Backtracking

Time complexity

Backtracking is basically an exhaustive search performed over the
search space. So the time complexity of a backtracking algorithm
is defined by the size of the search space.

For example, in the n-queens problem and Hamiltonian problem,
the size of the search space is about O(n!).

Intuitively, the first queen has n placements, the second queen
must not be in the same column as the first, so the second queen
has n — 1 possibilities, and so on, with a time complexity of O(n!).

Backtracking

Advantages & drawbacks

Advantages

@ Typically applied to difficult combinatorial problems for which no
efficient algorithms for finding exact solutions possibly exist.

@ Unlike the exhaustive-search approach,backtracking at least holds a
hope for solving some instances of nontrivial sizes in an acceptable
amount of time (especially for optimization problems).

@ Even if backtracking does not eliminate any elements of a problems
state space and ends up generating all its elements, it provides a
specific technique for doing so.

Drawbacks

@ Backtracking is not a very efficient technique (even though it was
succeeded to use in the previous problems).

@ In the worst case, it may have to generate all possible candidates in
an exponentially (or faster) growing state space of the problem.

Backtracking

