
13 - Backtracking

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 9-13 May 2022

1 / 26 Backtracking



Table of contents

Principal of Backtracking

State-space tree in backtracking algorithm

n-Queens problem

Hamiltonian circuit problem

Subset-sum problem

2 / 26 Backtracking



Principal of Backtracking

The exhaustive-search technique suggests generating all
candidate solutions and then identifying the one (or the ones)
with a desired property.

Backtracking algorithm improves exhaustive search.

In exhaustive search, all possible solutions are explored and
evaluated one-by-one

In backtracking, we do not examine all possibilities, only the
possibilities that lead to the solution. Other nodes that do not
lead to the solution are pruned.

Central idea:
To cut off a branch of the problems state-space tree, as soon as we
can deduce that it cannot lead to a solution.

3 / 26 Backtracking



Principal of Backtracking

Figure: Illustration of backtracking (sumber: https://miro.medium.com/)

4 / 26 Backtracking

https://miro.medium.com/


Representation of solution

Representation: an output can be thought of as n-tuple
(x1, x2, . . . , xn) where each coordinate xi is an element of
some finite linearly ordered set Si .

Tuples: all solution tuples can be of the same length (the
n-queens and the Hamiltonian circuit problem) and of
different lengths (the Subset-sum problem).

5 / 26 Backtracking



Backtracking in DFS

Backtracking in DFS is used in solution-searching problems that
have many possibilities of solution.

The solution is obtained by looking in a depth-first approach

You do not have enough information to know the next step.

Each decision leads you to several/many new choices.

Several sequence of choices may be the problem’s solution.

In DFS, backtracking is used as a methodological way to try
several sequences of decision.

6 / 26 Backtracking



Example of backtracking in DFS

8 32

1 4

7

6

5

8 32

1 4

7 6 5

8 32

1 4

7

6

5

8

32

1 4

7 6 5

8 32

1 4

7 6 5

8 32

1 47

6 5

8 3

2 1 4

7 6 5

8

32

1 4

7 6 5

8 32

1

4

7

6

5

8 32

1

4

7

6

5

8 3

2

1

4

7

6

5

1 32

8 4

7 6 5

2 3

7 1 4

6

8

5

8 3

2 1 4

7 6 5

2 3

6 7 4

1

8

5

2 3

6 4

8

1 7 5

2 3

6 8 4

1 7 5

8 3

2 6 4

1 7 5

8 3

2

1

4

7 6 5

8 3

2 1 4

7 6 5

8 32

7 4

1

6

5

8 32

7 4

1

6

5

2 3

6 4 5

1 7

82 8

6 4 3

1 7 5

2 3

6 8 4

1 7 5

2 3

6 8 4

1 7 5

2 3

6

8

4

1 7 5

8 3

2 6 4

1 7 5

1 3

8

2

4

7 6 5

7

382

4

6 5

17

382

4

6 1 5

S0

S1

S2

S3

S4

S5

S7

S8 S11

S6 S9 S10

7 / 26 Backtracking



State-space tree

8 / 26 Backtracking



State-space tree (1)

Backtracking can be seen as searching in a tree from the root to the

leaves (solution node).

State-space tree

It is a tree representing all the possible states (solution or non-solution)
of the problem from the root as an initial state to the leaf as a terminal
state.

A backtracking algorithm generates, explicitly or implicitly, a state-space
tree:

its nodes represent partially constructed tuples with the first i
coordinates defined by the earlier actions of the algorithm;

if such a tuple (x1, x2, . . . , xi ) is not a solution, the algorithm finds
the next element in Si+1 that is consistent with the values of
(x1, x2, . . . , xi ) and the problems constraints, and adds it to the
tuple as its (i + 1)st coordinate;

if such an element does not exist, the algorithm backtracks to
consider the next value of xi , and so on.

9 / 26 Backtracking



State-space tree (2)

Root represents an initial state before the search begins;

Internal nodes

the nodes of the first level in the tree represent the choices
made for the first component of a solution;
the nodes of the second level represent the choices for the
second component;
and so on...;

Leaves represent either non-promising dead ends or complete
solutions found by the algorithm.

10 / 26 Backtracking



State-space tree (3)

internal node

root

dead node

solution

Types of nodes in the state-space tree

Promising node: corresponds to a partially constructed
solution that may still lead to a complete solution;

Non-promising node: dead node

11 / 26 Backtracking



State-space tree (4)

The solution is searched by generating the state nodes, so that it
produces paths from the root to the leaves;

To generate the nodes, the DFS rule is followed;

The generated nodes are called live node;

The live node being expanded is called expand-node;

Each time the expand-node is expanded, the generated path gets
longer;

Function that is used to “kill” an expand-node is called bounding
function;

When a node is killed, then automatically all its children nodes are
pruned;

If the paths-generation ends up with dead node, the searching is
backtrack to the parents nodes;

These parents nodes become the new expand-nodes;

The searching is stopped if we find a solution.

12 / 26 Backtracking



n-Queens problem

13 / 26 Backtracking



n-Queens problem

Problem

Place n queens on an n × n chessboard, so that no two queens
attack each other (by being in the same row, in the same column,
or in the same diagonal).

For n = 1, the problem has a trivial solution

For n = 2, 3, the problem has no solution

What if n = 4?

14 / 26 Backtracking



Algorithm

START

1 begin from the leftmost column

2 if all the queens are placed, return true/ print configuration
3 check for all rows in the current column

1 if queen placed safely, mark row and column; and recursively
check if we approach in the current configuration, do we
obtain a solution or not

2 if placing yields a solution, return true
3 if placing does not yield a solution, unmark and try other rows

4 if all rows tried and solution not obtained, return false and
backtrack

END

15 / 26 Backtracking



n-Queens problem

Figure: State-space tree of solving the four-queens problem by backtracking; ×
denotes an unsuccessful attempt to place a queen in the indicated column. The
numbers above the nodes indicate the order in which the nodes are generated.

16 / 26 Backtracking



n-Queens problem

1 We start with the empty board and then place queen 1 in the first
possible position of its row, which is in column 1 of row 1.

2 Then we place queen 2, after trying unsuccessfully columns 1 and 2, in
the first acceptable position for it, which is square (2, 3), the square in
row 2 and column 3.

3 This proves to be a dead end because there is no acceptable position for
queen 3.

4 So, the algorithm backtracks and puts queen 2 in the next possible
position at (2, 4).

5 Then queen 3 is placed at (3, 2), which proves to be another dead end.

6 The algorithm then backtracks all the way to queen 1 and moves it to
(1, 2).

7 Queen 2 then goes to (2, 4), queen 3 to (3, 1), and queen 4 to (4, 3),
which is a solution to the problem.

17 / 26 Backtracking



Other problems

18 / 26 Backtracking



Hamiltonian circuit problem

Problem

Given a connected graph G, find a Hamiltonian circuit in G. (Recall that
a Hamiltonian circuit is a circuit that visits all vertices of G exactly once.)

Figure: (a) Graph. (b) State-space tree for finding a Hamiltonian circuit.
The numbers above the nodes of the tree indicate the order in which the
nodes are generated.

19 / 26 Backtracking



Subset-sum problem (1)

Problem

Find a subset of a given set A = {a1, . . . , an} of n positive integers
whose sum is equal to a given positive integer d.

Example 1: Given A = {1, 2, 5, 6, 8}, d = 9, the solution are:
{1, 2, 6} and {1, 8}.

Example 2: Given A = {3, 5, 6, 7}, d = 15, the solution are:
{3, 5, 7}.

20 / 26 Backtracking



Subset-sum problem (2)

Figure: Complete state-space tree of the backtracking algorithm applied
to the instance A = {3, 5, 6, 7} and d = 15 of the Subset-sum problem.
The number inside a node is the sum of the elements already included in
the subsets represented by the node. The inequality below a leaf
indicates the reason for its termination.

21 / 26 Backtracking



Subset-sum problem (1)

A path from the root to a node on the ith level of the tree indicates
which of the first i numbers have been included in the subsets
represented by that node.

We record the value of s, the sum of these numbers, in the node.

If s is equal to d , we have a solution to the problem. We can either
report this result and stop or,

If all solutions need to be found, continue by backtracking to the
nodes parent.

If s is not equal to d, we can terminate the node as non-promising if
either of the following two inequalities holds:

s + ai+1 > d (the sum s is too large)

s +
n∑

j=i+1

aj < d (the sum s is too small)

22 / 26 Backtracking



Backtracking framework

23 / 26 Backtracking



Backtracking algorithm framework

Algorithm 1 Backtracking
1: procedure Backtrack(X [1..i ])
2: input: X [1..i ]: the first i promising components of a solution
3: output: all the tuples representing the problem’s solution

4: if X [1..i ] is a solution then
5: write (X [1..i ])
6: else
7: for each x ∈ Si+1 consistent with X [1..i ] and the constraints do
8: X [i + 1]← x
9: Backtrack(X [1..i + 1])

10: end for
11: end if
12: end procedure

24 / 26 Backtracking



Time complexity

Backtracking is basically an exhaustive search performed over the
search space. So the time complexity of a backtracking algorithm
is defined by the size of the search space.

For example, in the n-queens problem and Hamiltonian problem,
the size of the search space is about O(n!).

Intuitively, the first queen has n placements, the second queen
must not be in the same column as the first, so the second queen
has n − 1 possibilities, and so on, with a time complexity of O(n!).

25 / 26 Backtracking



Advantages & drawbacks

Advantages

Typically applied to difficult combinatorial problems for which no
efficient algorithms for finding exact solutions possibly exist.

Unlike the exhaustive-search approach,backtracking at least holds a
hope for solving some instances of nontrivial sizes in an acceptable
amount of time (especially for optimization problems).

Even if backtracking does not eliminate any elements of a problems
state space and ends up generating all its elements, it provides a
specific technique for doing so.

Drawbacks

Backtracking is not a very efficient technique (even though it was
succeeded to use in the previous problems).

In the worst case, it may have to generate all possible candidates in
an exponentially (or faster) growing state space of the problem.

26 / 26 Backtracking


