
09 - DFS and BFS

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 25-29 April 2022

1 / 40 DFS and BFS

Table of contents

Graph traversal algorithm

DFS

BFS

Dynamic graph

2 / 40 DFS and BFS

Graph traversal

A graph traversal algorithm is an algorithm that looks for a
problem solution in a graph data structure, by visiting the nodes in
the graph systematically (assuming that the graph is connected).

Depth first search (DFS)

Breadth first search (BFS)

3 / 40 DFS and BFS

Graph data structure

Adjacency matrix

An adjacency matrix is an n × n binary matrix in which value of
[i , j]-th cell is 1 if there exists an edge having endpoints the i-th
vertex and the j-th vertex, otherwise the value is 0.

Adjacency list

An adjacency list is an array of separate lists. Each element of
array is a list of corresponding neighbour (or directly connected)
vertices. In other words, the i-th list of an adjacency list is a list of
all those vertices which is directly connected to i-th vertex.

4 / 40 DFS and BFS

Graph data structure

S

A D

C

F

G
H

E

A

B

C

D

E

F

G

A B C D E F G H

0

0

0

0

H 0

0

0

S

S

1

1

0

0

0

1

0

1

00 00 00 1

0

1

1

1

0

0

0

0

0

0

0 1

00 0

000

01 1 1

10 00

000

0

0

0

0

0 00

0

1

0

0

0

0

0 1

0

0

0

1 0

0

0

0

B

0

0

0

0

1

0

0

Figure: A graph and its adjacency matrix

5 / 40 DFS and BFS

Graph data structure

S

D

C

F

G
H

E

S: [A, B]

A: [S]

B: [S, C, G]

C: [B, D, E, F]

D: [C]

E: [C, H]

F: [C, G]

G: [B, F, H]

B

A

Adjacency list: [[A,B], [S], [S,C,G], [B,D,E,F], [C], [C,H], [C,G], [B,F,H]]

Figure: A graph and its adjacency list

6 / 40 DFS and BFS

Graph representation in searching process

Two approaches in the solution searching process

1 Static graph: the graph is constructed before the searching
process. Graph is represented as a data structure.

Example: BFS, DFS

2 Dynamic graph: the graph is constructed along with the
process of searching.

7 / 40 DFS and BFS

Depth-First Search (DFS)

8 / 40 DFS and BFS

DFS (1): Algorithm

DFS begins at a root node and inspects all the neighboring nodes.

Visit the node v ;

Visit node w that is adjacent to v ;

Repeat DFS starting from node w ;

When vertex u is reached so that all its neighbor are visited,
the searching is “backtracked” to the last visited node that
still has an unvisited neighbor.

Keep going on like this.

Searching is finished when there is no more node that can be
reached from the visited node.

9 / 40 DFS and BFS

DFS (2): Pseudocode (recursive)

Algorithm 1 DFS in a graph
1: procedure DFS(G)
2: input: graph G = (V ,E)
3: output: graph G with V (G) marked with consecutive integers indicating

the DFS-order

4: count ← 0
5: initialize array visited = []
6: for v ∈ V do
7: visited[v] = 0
8: end for
9: for v ∈ V do

10: if visited[v] = 0 then
11: Dfs(v)
12: end if
13: end for
14: return visited
15: end procedure

10 / 40 DFS and BFS

DFS (3): Pseudocode

Algorithm 2 DFS a vertex
1: procedure DFS(v)
2: count ← count + 1
3: visited[v] = count
4: for w ∈ N(v) do
5: if visited[w] = 0 then
6: Dfs(w)
7: end if
8: end for
9: end procedure

11 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (4): Example on a tree

12 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (5): Example on a graph

D

C

F

G
H

ES

A

B

13 / 40 DFS and BFS

DFS (6): DFS tree

S

A B

C

E

H

G

F

D

Figure: Tree after DFS run

14 / 40 DFS and BFS

Breadth-First Search (BFS)

15 / 40 DFS and BFS

BFS (1): Algorithm

BFS begins at a root node and inspects all the neighboring nodes.

Then for each of those neighbor nodes in turn, it inspects their
neighbor nodes which were unvisited, and so on.

Visit the node v ;

Visit all nodes that are adjacent to v ;

Visit all nodes not yet visited, and are adjacent to the nodes
that just visited;

Keep going on like this...

16 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (2): Example on a tree

17 / 40 DFS and BFS

BFS (3): Example on a graph

S

A D

C

F

G
H

E

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

S

A D

C

F

G
H

E

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

S

A D

C

F

G
H

E

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

S

A D

C

F

G
H

E

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

S

A D

C

F

G
H

E

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

C

F

G
H

ES

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (3): Example on a graph

D

F

G
H

ECS

A

B

18 / 40 DFS and BFS

BFS (4): BFS tree

A

C G

D FE H

S

B

Figure: Tree after BFS run

19 / 40 DFS and BFS

BFS (5): Data structure

1 The adjacency matrix A = [aij] of size n × n,

aij = 1, if node i and node j are adjacent
aij = 0, if node i and node j are non-adjacent

2 Queue Q to store the visited nodes.

3 Boolean array, named “Visited”, of size 1× n

visited[i]: True if node i has been visited
visited[i]: False if node i has not been visited

4 “Visited” can be also set as an integer array, indicating the
order of the visited nodes after BFS procedure is implemented.

20 / 40 DFS and BFS

BFS (6): Pseudocode (recursive)

Algorithm 3 BFS in a graph
1: procedure BFS(G)
2: input: graph G = (V ,E)
3: output: graph G with V (G) marked with consecutive integers indicating

the BFS-order

4: count ← 0
5: initialize array visited = []
6: for v ∈ V do
7: visited[v] = 0
8: end for
9: for v ∈ V do

10: if visited[v] = 0 then
11: Bfs(v)
12: end if
13: end for
14: return visited
15: end procedure

21 / 40 DFS and BFS

BFS (7): Pseudocode

Algorithm 4 BFS a vertex
1: procedure BFS(v)
2: count ← count + 1
3: visited[v] = count
4: initialize queue Q = [v]
5: while Q 6= [] do
6: for w ∈ N(Q[0]) do . Q[0] is the first element in the queue Q

7: if visited[w] = 0 then
8: count ← count + 1
9: visited[w] = count

10: add w to Q
11: end if
12: end for
13: remove v from Q
14: end while
15: end procedure

22 / 40 DFS and BFS

Applications of DFS and BFS

Tugas: Buat rangkuman tentang satu aplikasi algoritma DFS atau
BFS. Jelaskan apa permasalahannya, dan bagaimana algoritma
DFS/BFS digunakan untuk menyelesaikan permasalahan tersebut!

Setiap mahasiswa diwajibkan memberikan contoh yang berbeda
dengan mahasiswa lain!

Tugas diketik dalam Bahasa Indonesia ±1 halaman.

Tulis topik pada list berikut ...

23 / 40 DFS and BFS

...

Dynamic graph

24 / 40 DFS and BFS

Dynamic graph

Graph: G (V ,E), where V : set of vertices and E : set of edges.

Dynamic graph: G = (G1,G2, . . . ,Gt) where Gt = (Vt ,Et) and is
the current number of snapshots.

In dynamic graph, new nodes can be formed and create links
with the existing nodes; or nodes can disappear, thus
terminating the existing links.

Why need dynamic graphs?

Real-life situations that are modeled with graphs can be very
complex. The graph is not static and can evolve through
time.

25 / 40 DFS and BFS

Dynamic graph: example

Evolution of a social network

Gede

Made

Ketut

Gede

Made

Ketut

Gede

Made

Ketut

PutuPutu Putu

LuhLuh Luh

T = 0 T = 1 T = 2

Figure: Evolution of a social network (source: towardsatascience.com)

The evolution shows 3 snapshots at 3 time-points

Some new friendships being made and also some get broken

There are new incoming nodes (people joining the network) and some
outgoing nodes (people leaving the network)

26 / 40 DFS and BFS

towardsatascience.com

Solution searching via DFS/BFS

Solution searching → creating dynamic tree

Each node is checked, to see if the solution (goal) is obtained.

If a node is a solution, the searching is finished (for one solution); or is
continued to look for other solutions.

Representation of dynamic tree

State-space tree: tree of problem’s states

Each node represents a problem state

Root: initial state
Leaves: solution/goal state

Branch: operator/operation

State space: set of all nodes

Solution space: set of solution state

A problem solution in a dynamic tree is showed using a path from the root to a

solution state.

27 / 40 DFS and BFS

State-space tree example: Permutation

∅

A CB

AB AC BA BC CA CB

ABC ACB BAC BCA CAB CBA

Solution space: set of all solution states

State space: all nodes in dynamic tree

leaves:

solution states

nodes
problem states

operator
add element “X”

root
initial state

Figure: State space tree of “Permutation of A, B, C”

28 / 40 DFS and BFS

BFS for constructing state-space tree

00

1 2

0

1 2

43 65

0

1 2

43

Figure: State space tree of “Permutation of A, B, C”

Initialize the initial state as the root, add children nodes.

All nodes at level d are constructed before constructing the
nodes at level d + 1.

29 / 40 DFS and BFS

DFS for constructing state-space tree

∅

A CB

AB AC BA BC CA CB

ABC ACB BAC BCA CAB CBA

add(A)
add(B)

add(C)

add(B) add(B)add(A) add(A)add(C) add(C)

add(C) add(C)add(B) add(B)add(A) add(A)

S0:

S11: S13: S15:

S1: S2: S3:

S4: S6: S8:S5: S7: S9:

S10: S12: S14:

30 / 40 DFS and BFS

DFS for constructing state-space tree

0 0

1 4

32 65

0

1 4

32 5

0

1 4

32

0

1

32

(vii)(vi)(v)(iv)(i)

0

1

(ii)

0

1

2

(iii)

00

1 2

0

1 2

43 65

0

1 2

43

(ii)(i) (iv)(iii)

BFS

DFS

Figure: State space tree construction - DFS vs BFS

31 / 40 DFS and BFS

BFS for constructing state-space tree

∅

A CB

AB AC BA BC CA CB

ABC ACB BAC BCA CAB CBA

add(A)
add(B)

add(C)

add(B) add(B)add(A) add(A)add(C) add(C)

add(C) add(C)add(B) add(B)add(A) add(A)

S0:

S11: S13: S15:

S1: S2: S3:

S4: S6: S8:S5: S7: S9:

S10: S12: S14:

32 / 40 DFS and BFS

8-puzzle game

33 / 40 DFS and BFS

Designing DFS/BFS for 8-puzzle

2 8 3

1 6 4

7 5

1 2 3

8 4

7 56

initial state goal state

State: the states are defined based on the empty box

34 / 40 DFS and BFS

Designing DFS/BFS for 8-puzzle

Operator: up, down, left, right

8 32

1 4

7 6 5

8 32

1 4

7 6 5

8 32

1 4

7 6 5

8

32

1 4

7 6 5

8 32

1 4

7

6

5

left up
right

down

Remark : when creating the state-space tree, the order of the
operator must be consistent

35 / 40 DFS and BFS

BFS state-space tree for 8-puzzle game

8 32

1 4

7

6

5

8 32

1 4

7

6

5

8 32

1 4

7 6 5

8 32

1 4

7

6

5

8

32

1 4

7 6 5

8 32

1 4

7 6 5

8 32

1 4

7 6 5

8 32

1 47

6 5

8 3

2 1 4

7 6 5

3

1

2

8 4

7 6 5

8

32

1 4

7 6 5

8 32

4 5

7 6

1

8

1

2

4 3

7 6 5

8 32

1

4

7

6

5

8 32

1

4

7

6

5

8 3

2

1

4

7

6

5

8 32

1

7 5

6

4

8

7

2

1 3

5

6

4

8 32

1

7 5

6

4

2 8

1 6 3

7 5 4

2 3

1 5 6

7

8

4

2 3

1 8 4

7 5 4

2 38

1 6

7 5 4

2 3

1 4 5

7

8

6

2 8

1 4 3

7 6 5

2 4

1 8

3

7 6 5

1 32

8 4

7 6 5

2 3

7 1 4

6

8

5

8 3

2 1 4

7 6 5

2 3

6 7 4

1

8

5

2 3

6 4

8

1 7 5

2 3

6 8 4

1 7 5

8 3

2 6 4

1 7 5

8 3

2

1

4

7 6 5

8 3

2 1 4

7 6 5

8 32

7 4

1

6

5

8 32

7 4

1

6

5

2 3

6 4 5

1 7

82 8

6 4 3

1 7 5

2 3

6 8 4

1 7 5

2 3

6 8 4

1 7 5

2 3

6

8

4

1 7 5

8 3

2 6 4

1 7 5

1 3

8

2

4

7 6 5

7

382

4

6 5

17

382

4

6 1 5

S1 S3

S4

S2

S9 S10

S5 S7 S8S6

S0

36 / 40 DFS and BFS

DFS state-space tree for 8-puzzle game

8 32

1 4

7

6

5

8 32

1 4

7 6 5

8 32

1 4

7

6

5

8

32

1 4

7 6 5

8 32

1 4

7 6 5

8 32

1 47

6 5

8 3

2 1 4

7 6 5

8

32

1 4

7 6 5

8 32

1

4

7

6

5

8 32

1

4

7

6

5

8 3

2

1

4

7

6

5

1 32

8 4

7 6 5

2 3

7 1 4

6

8

5

8 3

2 1 4

7 6 5

2 3

6 7 4

1

8

5

2 3

6 4

8

1 7 5

2 3

6 8 4

1 7 5

8 3

2 6 4

1 7 5

8 3

2

1

4

7 6 5

8 3

2 1 4

7 6 5

8 32

7 4

1

6

5

8 32

7 4

1

6

5

2 3

6 4 5

1 7

82 8

6 4 3

1 7 5

2 3

6 8 4

1 7 5

2 3

6 8 4

1 7 5

2 3

6

8

4

1 7 5

8 3

2 6 4

1 7 5

1 3

8

2

4

7 6 5

7

382

4

6 5

17

382

4

6 1 5

S0

S1

S2

S3

S4

S5

S7

S8 S11

S6 S9 S10

37 / 40 DFS and BFS

Efficiency of DFS and BFS

Completeness: if the solution exists, does the algorithm guarantees
that an optimal solution is found?

Optimality: does the algorithm guarantees that the solution
obtained is optimal (eg: the solution path has the lowest cost)

Time & space complexities

The time and space complexities are measured based on the following
factors:

b (branching factor): the maximum number of possible branches
from a node

d (depth): the depth of the best solution (the lowest-cost path)

m: the maximum depth of the state space (can be ∞)

38 / 40 DFS and BFS

Efficiency of BFS

Completeness: yes as long as b is bounded (finite)

Optimality: yes if the cost is determined by the number of
steps

Time complexity: 1 + b + b2 + b3 + · · ·+ bd = O(bd)

Space complexity: O(bd), because we have to store all
states at each depth.

39 / 40 DFS and BFS

Efficiency of DFS

Completeness: yes as long as b is bounded (finite), and the
“redundant paths” and “repeated paths” are handled.

Optimality: not always, because we might end up traversing
many states before reaching the solution

Time complexity: O(bm), because we have to generate the
states based on the depth

Space complexity: O(bm), because we only store the states
that lead to a solution

40 / 40 DFS and BFS

