09 - DFS and BFS

[KOMS119602] \& [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari
Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 25-29 April 2022

- Graph traversal algorithm
- DFS
- BFS
- Dynamic graph

Graph traversal

A graph traversal algorithm is an algorithm that looks for a problem solution in a graph data structure, by visiting the nodes in the graph systematically (assuming that the graph is connected).

- Depth first search (DFS)
- Breadth first search (BFS)

Graph data structure

Adjacency matrix

An adjacency matrix is an $n \times n$ binary matrix in which value of [$i, j]$-th cell is 1 if there exists an edge having endpoints the i-th vertex and the j-th vertex, otherwise the value is 0 .

Adjacency list

An adjacency list is an array of separate lists. Each element of array is a list of corresponding neighbour (or directly connected) vertices. In other words, the i-th list of an adjacency list is a list of all those vertices which is directly connected to i-th vertex.

Graph data structure

A
A
B
C
D
E
F
G
H
S $\left[\begin{array}{ccccccccc}\mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{F} & \mathrm{G} & \mathrm{H} & \mathrm{S} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Figure: A graph and its adjacency matrix

Graph data structure

S: $[\mathrm{A}, \mathrm{B}]$
A: $[\mathrm{S}]$
B: $[\mathrm{S}, \mathrm{C}, \mathrm{G}]$
C: $[\mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}]$
D: $[\mathrm{C}]$
E: $[\mathrm{C}, \mathrm{H}]$
F: $[\mathrm{C}, \mathrm{G}]$
G: $[\mathrm{B}, \mathrm{F}, \mathrm{H}]$

Adjacency list: [[A,B], [S], [S,C,G], [B,D,E,F], [C], [C,H], [C,G], [B,F,H]]
Figure: A graph and its adjacency list

Graph representation in searching process

Two approaches in the solution searching process
(1) Static graph: the graph is constructed before the searching process. Graph is represented as a data structure.

- Example: BFS, DFS
(2) Dynamic graph: the graph is constructed along with the process of searching.

Depth-First Search (DFS)

DFS (1): Algorithm

DFS begins at a root node and inspects all the neighboring nodes.

- Visit the node v;
- Visit node w that is adjacent to v;
- Repeat DFS starting from node w;
- When vertex u is reached so that all its neighbor are visited, the searching is "backtracked" to the last visited node that still has an unvisited neighbor.
- Keep going on like this.
- Searching is finished when there is no more node that can be reached from the visited node.

DFS (2): Pseudocode (recursive)

```
Algorithm 1 DFS in a graph
    procedure \(\operatorname{DFS}(G)\)
        input: graph \(G=(V, E)\)
        output: graph \(G\) with \(V(G)\) marked with consecutive integers indicating
    the DFS-order
    count \(\leftarrow 0\)
    initialize array visited \(=[\) ]
        for \(v \in V\) do
        visited \([v]=0\)
        end for
        for \(v \in V\) do
            if visited[ \(v\) ] \(=0\) then
            DFS(v)
            end if
        end for
        return visited
15: end procedure
```


DFS (3): Pseudocode

```
Algorithm 2 DFS a vertex
    procedure \(\mathrm{DFS}(v)\)
        count \(\leftarrow\) count +1
        visited \([v]=\) count
        for \(w \in N(v)\) do
            if visited \([w]=0\) then
                DFs(w)
            end if
        end for
    9: end procedure
```

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (4): Example on a tree

DFS (5): Example on a graph

DFS (6): DFS tree

Figure: Tree after DFS run

Breadth-First Search (BFS)

BFS (1): Algorithm

BFS begins at a root node and inspects all the neighboring nodes.
Then for each of those neighbor nodes in turn, it inspects their neighbor nodes which were unvisited, and so on.

- Visit the node v;
- Visit all nodes that are adjacent to v;
- Visit all nodes not yet visited, and are adjacent to the nodes that just visited;
- Keep going on like this...

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (2): Example on a tree

BFS (3): Example on a graph

BFS (4): BFS tree

Figure: Tree after BFS run

BFS (5): Data structure

(1) The adjacency matrix $A=\left[a_{i j}\right]$ of size $n \times n$,

- $a_{i j}=1$, if node i and node j are adjacent
- $a_{i j}=0$, if node i and node j are non-adjacent
(2) Queue Q to store the visited nodes.
(3) Boolean array, named "Visited", of size $1 \times n$
- visited[i]: True if node i has been visited
- visited[i]: False if node i has not been visited
(1) "Visited" can be also set as an integer array, indicating the order of the visited nodes after BFS procedure is implemented.

BFS (6): Pseudocode (recursive)

```
Algorithm 3 BFS in a graph
    procedure \(\operatorname{BFS}(G)\)
        input: graph \(G=(V, E)\)
        output: graph \(G\) with \(V(G)\) marked with consecutive integers indicating
    the BFS-order
    count \(\leftarrow 0\)
    initialize array visited \(=[\) ]
        for \(v \in V\) do
        visited \([v]=0\)
        end for
        for \(v \in V\) do
            if visited[ \(v\) ] \(=0\) then
        BFS(v)
            end if
        end for
        return visited
15: end procedure
```


BFS (7): Pseudocode

```
Algorithm 4 BFS a vertex
    1: procedure \(\mathrm{BFS}(v)\)
        count \(\leftarrow\) count +1
        visited \([v]=\) count
        initialize queue \(Q=[v]\)
        while \(Q \neq[\) ] do
            for \(w \in N(Q[0])\) do \(\quad \triangleright Q[0]\) is the first element in the queue \(Q\)
        if visited \([w]=0\) then
                count \(\leftarrow\) count +1
                visited \([w]=\) count
                add \(w\) to \(Q\)
            end if
            end for
            remove \(v\) from \(Q\)
        end while
    end procedure
```


Applications of DFS and BFS

Tugas: Buat rangkuman tentang satu aplikasi algoritma DFS atau BFS. Jelaskan apa permasalahannya, dan bagaimana algoritma DFS/BFS digunakan untuk menyelesaikan permasalahan tersebut! Setiap mahasiswa diwajibkan memberikan contoh yang berbeda dengan mahasiswa lain!

Tugas diketik dalam Bahasa Indonesia ± 1 halaman.
Tulis topik pada list berikut . . .

Dynamic graph

Dynamic graph

Graph: $G(V, E)$, where V : set of vertices and E : set of edges.
Dynamic graph: $G=\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ where $G_{t}=\left(V_{t}, E_{t}\right)$ and is the current number of snapshots.

- In dynamic graph, new nodes can be formed and create links with the existing nodes; or nodes can disappear, thus terminating the existing links.

Why need dynamic graphs?

- Real-life situations that are modeled with graphs can be very complex. The graph is not static and can evolve through time.

Dynamic graph: example

Evolution of a social network

Figure: Evolution of a social network (source: towardsatascience.com)

- The evolution shows 3 snapshots at 3 time-points
- Some new friendships being made and also some get broken
- There are new incoming nodes (people joining the network) and some outgoing nodes (people leaving the network)

Solution searching via DFS/BFS

Solution searching \rightarrow creating dynamic tree

- Each node is checked, to see if the solution (goal) is obtained.
- If a node is a solution, the searching is finished (for one solution); or is continued to look for other solutions.

Representation of dynamic tree

- State-space tree: tree of problem's states
- Each node represents a problem state
- Root: initial state
- Leaves: solution/goal state
- Branch: operator/operation
- State space: set of all nodes
- Solution space: set of solution state

A problem solution in a dynamic tree is showed using a path from the root to a solution state.

State-space tree example: Permutation

Solution space: set of all solution states
State space: all nodes in dynamic tree
Figure: State space tree of "Permutation of A, B, C"

BFS for constructing state-space tree

Figure: State space tree of "Permutation of A, B, C"

- Initialize the initial state as the root, add children nodes.
- All nodes at level d are constructed before constructing the nodes at level $d+1$.

DFS for constructing state-space tree

DFS for constructing state-space tree

DFS

(0)

(i)
(ii)

(iii)
(iv)
(v)

(vi)
(vii)

BFS

(0)

(iii)

(iv)

Figure: State space tree construction - DFS vs BFS

BFS for constructing state-space tree

8-puzzle game

Designing DFS/BFS for 8-puzzle

2	8	3
1	6	4
7		5

initial state

1	2	3
8		4
7	6	5

goal state

- State: the states are defined based on the empty box

Designing DFS/BFS for 8-puzzle

- Operator: up, down, left, right

Remark: when creating the state-space tree, the order of the operator must be consistent

BFS state－space tree for 8－puzzle game

DFS state-space tree for 8-puzzle game

Efficiency of DFS and BFS

- Completeness: if the solution exists, does the algorithm guarantees that an optimal solution is found?
- Optimality: does the algorithm guarantees that the solution obtained is optimal (eg: the solution path has the lowest cost)
- Time \& space complexities

The time and space complexities are measured based on the following factors:

- b (branching factor): the maximum number of possible branches from a node
- d (depth): the depth of the best solution (the lowest-cost path)
- m : the maximum depth of the state space (can be ∞)

Efficiency of BFS

- Completeness: yes as long as b is bounded (finite)
- Optimality: yes if the cost is determined by the number of steps
- Time complexity: $1+b+b^{2}+b^{3}+\cdots+b^{d}=\mathcal{O}\left(b^{d}\right)$
- Space complexity: $\mathcal{O}\left(b^{d}\right)$, because we have to store all states at each depth.

Efficiency of DFS

- Completeness: yes as long as b is bounded (finite), and the "redundant paths" and "repeated paths" are handled.
- Optimality: not always, because we might end up traversing many states before reaching the solution
- Time complexity: $\mathcal{O}\left(b^{m}\right)$, because we have to generate the states based on the depth
- Space complexity: $\mathcal{O}(b m)$, because we only store the states that lead to a solution

