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Graphs

Graph is a mathematical data structure that consists of set of
nodes/vertices connected by edges.

Figure: A (undirected) graph
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Graphs

Vertices in the graph can have an orientation, and the graph is
called a directed graph.

Figure: A directed graph
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Graphs

Some terminology:

Degree (of a vertex): # edges incident to that node

In-degree (for directed graph): # edges coming to the vertex

Out-degree: # edges going from the vertex

Path: sequence of vertices/edges from one vertex to another

Connected: if between two vertices, there is a path

Cycle: a path that starts and ends at the same vertex

Tree: connected graph that contains no cycle (acyclic)
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Minimum Spanning Tree
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What is a tree?

A tree is a connected acyclic graph.

Connected means there is a path between two vertices in the
graph.

Acyclic means does not contain a cycle.

A spanning tree of an undirected graph G is a subgraph T that is
a tree (connected, acyclic graph) and span G (includes all V (G )).
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Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.
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Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.
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Minimum spanning tree (MST)

The origin of MST

Problem of finding an efficient coverage in Western Moravia
in Brno. To find the most economical construction of
electrical power network.

Czech scientist Otakar Borüvka developed the first known
algorithm for finding a minimum spanning tree, in 1926.
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MST in real life (1)

A large graph and its MST

source: https://apprize.best/science/algorithms_2/algorithms_2.files/image091.jpg

9 / 42 Graph Algorithms (part 1)

https://apprize.best/science/algorithms_2/algorithms_2.files/image091.jpg


MST in real life (2)

MST of bicycle routes in North Seattle

source: http://www.flickr.com/photos/ewedistrict/21980840
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MST in real life (3)

MST of a random graph

source: http://algo.inria.fr/broutin/gallery.html
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Applications of MST

Network design

telephone, electrical, hydraulic, TV cable, computer, or road
networks in satellite

Cluster analysis

Real-time face verification

Approximation algorithms for NP-hard problems

example: the Traveling Salesman Problem
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Solving MST with brute-force approach

How do we solve MST with brute-force approach?

Brute-force algorithm:

1 List all possible spanning tree

2 Compute the weight of every spanning tree

3 Take the spanning tree that has the minimum weight
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Solving MST with greedy algorithm (1)

1. For simplification, we assume the followings:

The graph is connected

Edge weights are distinct

Edge weights are not necessarily distances

Consequence: with the assumption, an MST exists and it is unique
(the only one)
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Solving MST with greedy algorithm (2)

2. Underlying principle:

The following properties hold for every spanning tree in a graph

Adding an edge that connects two vertices in a tree creates a
unique cycle.

Removing an edge from a tree breaks it into two separate
subtrees.
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Solving MST with greedy algorithm (3)

3. Cut property

A cut in G is a partition of V (G ) into two (nonempty) sets A and B.

A crossing edge connects a vertex in A and a vertex in B.
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Solving MST with greedy algorithm (4)

3. Cut property

A cut in G is a partition of V (G ) into two (nonempty) sets A and B.

A crossing edge connects a vertex in A and a vertex in B.

Lemma (Cut property)

Given any cut, the crossing edge of minimum weight is in the MST.

Proof. Suppose minimum-weight crossing edge e is not in the MST T .

Adding e to T creates a cycle.

Some other edge f in the cycle must be a crossing edge.

T ′ = T − {e}+ {f } is also a spanning tree, and
cost(T ′) < cost(T ).

Contradiction
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Solving MST with greedy algorithm (5)

3. Cut property

f

creates a cycle

the MST does not contain e
but it contains f
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Greedy MST algorithm

Input: G : undirected graph, w : weight function
Output: a set of edges that forms a MST

Start with all edges colored gray (gray color indicates the
edges are not in the solution);

Find cut with no black crossing edges; color its
minimum-weight edge black (black color indicates that the
edge is included in the solution);

Repeat until |V | − 1 edges are colored black (all black edges
are the MST).
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Greedy MST algorithm
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Figure: The input graph G
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Greedy MST algorithm
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm
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Figure: Choose another cut
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm
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Figure: Choose another cut
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm
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Figure: Choose another cut
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm
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Figure: Choose another cut
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Greedy MST algorithm
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Figure: Take the minimum-weight edge in the cut and color it black
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Greedy MST algorithm: correctness proof

Theorem

The greedy algorithm computes the MST.

Proof.

Any edge colored black is in the MST (by the cut property).

Fewer than |V | − 1 black edges ⇒ cut with no black crossing
edges. (consider cut whose vertices are one connected
component)

fewer than |V | − 1 edges colored black a cut with no black crossing edges
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Kruskal’s and Prim’s
algorithms
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Greedy MST algorithm: more efficient implementations

The greedy algorithm that is based on the “Cut property” is
difficult to implement, and the efficiency if the algorithm can still
be improved. We ask the following questions:

How to efficiently choose the cut?

How to efficiently find the minimum-weight edge?

1 Kruskal’s algorithm

2 Prim’s algorithm

3 Borüvka’s algorithm (this will not be discussed here)
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Without the simplifying assumption...

What if edge weights are not distinct?
The MST is not unique. But the Greedy MST algorithm still works
(similar proof )

2
3

2

3

2
3

2

3

What if the graph is not connected?
Get Minimum Spanning Forest (MST for each connected
component)
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Kruskal’s algorithm
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Kruskal’s algorithm

This is to find a minimum spanning tree of an undirected edge-weighted
graph. Note that it finds a minimum spanning forest if the graph is not
connected).

This algorithm uses Greedy technique, and it first appeared in

Proceedings of the AMS, in 1956, and was written by Joseph Kruskal.

Input: a weighted graph G
Output: a set of vertices that forms an MST of G

Algorithm.

Consider edges in ascending order of weight;

Add next edge to tree T unless doing so would create a cycle.
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Kruskal’s MST algorithm
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Figure: The edges are ordered based on their weights
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Kruskal’s MST algorithm
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Figure: Edge GH is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge AG is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge BH is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge BC is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge AC is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge EG is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge AE is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge BF is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge DE is included in the MST
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Kruskal’s MST algorithm
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Figure: Edge AB is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge BG is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge DG is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge CF is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)



Kruskal’s MST algorithm
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Figure: Edge DH is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge FH is not included in the MST, otherwise it would create a
cycle
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Kruskal’s MST algorithm
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Figure: Edge DF is not included in the MST, otherwise it would create a
cycle
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Proof of correctness of Kruskal’s MST algorithm

Theorem (Kruskal, 1956)

Kruskal’s algorithm computes the MST.

Proof. Let T be the graph output by Kruskal’s algorithm.

T is a spanning tree. Follows from the algorithm (we do not
choose an edge if it creates a cycle with the edges already
chosen. T is connected, oth. the edge of smallest weight that
crosses two components of T would have been chosen.

T has the minimal weight among the other spanning trees.
Follows from the cut property: given any cut, the crossing
edge of minimum weight is in the MST.
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Proof of correctness of Kruskal’s MST algorithm

Question. How to check if adding an edge to T would create a cycle?

Alternative 1. Use DFS algorithm.

O(n)-time per cycle check, with n = |V |.

O(mn)-time overall, with n = |V | adn m = |E |.

Alternative 2. Use the union-find data structure.

Maintain a set for each connected component.

If v and w are in same component, then adding edge vw creates a
cycle.

To add vw to T , merge sets containing v and w .
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Prim’s algorithm
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Prim’s algorithm

Prims algorithm is also a Greedy algorithm.

Algorithm

It starts with an empty spanning tree;

The idea is to maintain two sets of vertices;

The first set contains the vertices already included in the
MST, the other set contains the vertices not yet included;

At every step, it considers all the edges that connect the two
sets, and picks the minimum weight edge from these edges;

After picking the edge, it moves the other endpoint of the
edge to the set containing MST.
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Prim’s MST algorithm

Input: a weighted graph G
Output: a set of vertices that forms an MST of G

Algorithm:

Initialize the solution set T = ∅;
Start with an arbitrary vertex and greedily grow T ;

Add to T the minimum weight edge with exactly on endpoint
in T ;

Repeat until T has size |V | − 1.
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Prim’s MST algorithm
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Start with the weighted graph. Choose a random vertex, say H.
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Prim’s MST algorithm
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Look at the edges incident to H. GH is the edge of minimum weight.
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Prim’s MST algorithm
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Include GH to the solution set.
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Prim’s MST algorithm
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Consider vertex {H,G}. Look at the edges incident to G or H.

AG is the edge of minimum weight.
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Prim’s MST algorithm
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Include AG to the solution set.
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Prim’s MST algorithm
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BH is the minimum-weight edge incident to {H,G ,A}.
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Include BH to the solution set.
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Prim’s MST algorithm
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BC is the minimum-weight edge incident to {H,G ,A,B}.
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Include BC to the solution set.
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Prim’s MST algorithm
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EG is the minimum-weight edge incident to {H,G ,A,B,C}
(AC cannot be chosen since it has two neighbors in the current solution)
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Include GE to the solution set.
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Prim’s MST algorithm
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BF is the minimum-weight edge incident to {H,G ,A,B,C ,E}
(AE cannot be chosen since it has two neighbors in the current solution)
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Include BF to the solution set
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Prim’s MST algorithm
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DE is the minimum-weight edge incident to {H,G ,A,B,C ,E ,F}
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Prim’s MST algorithm
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Include DE to the solution set
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{GH,AG ,BH,BC ,EG ,BF ,DE} is the solution of the MST
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Prim’s MST algorithm: proof of correctness

Theorem (Jarnik 1930, Djikstra 1957, Prim 1959)

Prim’s algorithm computes the MST.

Proof. Let T be the graph output by Prim’s algorithm

T is a spanning tree. At each step, we add a vertex in G \ T
that has one neighbor in T . T is spanning because T
contains |V | − 1 edges, i.e. |V (T )| = |V (G )|.

T is an MST. Follows from the cut property: given any cut,
the crossing edge of minimum weight is in the MST.
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Kruskal’s MST algorithm: proof of correctness

Question. How to check if adding an edge to T would create a cycle?

Alternative. Naive solution: use DFS.

O(|V |)-time per cycle check.

O(|E ||V |)-time overall.

Question. How to find cheapest edge with exactly one endpoint in S?

Alternative. Brute force: try all edges.

O(E )-time per spanning tree edge.

O(|E ||V |)-time overall.
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Algorithm for MST in
Euclidean space

37 / 42 Graph Algorithms (part 1)



Euclidean MST

Problem: given n points in the plane, find an MST connecting
them, where the distances between point pairs are their Euclidean
distances.

Euclidean distance. Given two vertices a = (x1, y1) and
b = (x2, y2),

d(a,b) =
√

(x1 − x2)2 + (y1 − y2)2

Naive algorithm: Compute Θ(n2) distances and run Prim’s
algorithm.

Improvement. Exploit the geometric structure and do it in
O(n log n).
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MST algorithm for graph in Euclidean space

Euclidean MST algorithm

Compute Voronoi diagram to get Delaunay triangulation.

Run Kruskal’s MST algorithm on Delaunay edges.

Complexity. O(n log n)

The Delaunay triangulation contains ≤ 3n edges since it is
planar.

O(n log n) for Voronoi.

O(n log n) for Kruskal

Lower bound. Any comparison-based Euclidean MST algorithm
requires Ω(n log n) comparisons.
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MST algorithm for graph in Euclidean space
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Application of Euclidean MST: k-clustering

k-Clustering: Divide a set of objects classify into k coherent groups.

Distance function: Numeric value specifying ”closeness” of two objects.

Goal: Divide into clusters so that objects in different clusters are far
apart.

Single-link: Distance between two clusters equals the distance between
the two closest objects (one in each cluster).

Single-link clustering: Given an integer k , find a k-clustering that
maximizes the distance between two closest clusters.
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Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link k-clustering:

Form |V | clusters of one object each.

Find the closest pair of objects such that each object is in a
different cluster, and merge the two clusters.

Repeat until there are exactly k clusters.

Observation: This is Kruskal’s algorithm (stop when there are k
connected components).

Alternative solution: Run Prim’s algorithm and delete k − 1 max weight
edges.
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