
10 - Graph Algorithms (part 1)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 18-21 April 2022

1 / 42 Graph Algorithms (part 1)

Table of contents

Definition of graph

Minimum spanning tree (MST)

Greedy MST
Kruskal algorithm for MST
Prim algorithm for MST
Euclidean MST

The contents of this lecture is extracted from the slides of Robert Sedgewick

(Analysis of Algorithms)

2 / 42 Graph Algorithms (part 1)

Graphs

Graph is a mathematical data structure that consists of set of
nodes/vertices connected by edges.

Figure: A (undirected) graph

3 / 42 Graph Algorithms (part 1)

Graphs

Vertices in the graph can have an orientation, and the graph is
called a directed graph.

Figure: A directed graph

4 / 42 Graph Algorithms (part 1)

Graphs

Some terminology:

Degree (of a vertex): # edges incident to that node

In-degree (for directed graph): # edges coming to the vertex

Out-degree: # edges going from the vertex

Path: sequence of vertices/edges from one vertex to another

Connected: if between two vertices, there is a path

Cycle: a path that starts and ends at the same vertex

Tree: connected graph that contains no cycle (acyclic)

5 / 42 Graph Algorithms (part 1)

Minimum Spanning Tree

6 / 42 Graph Algorithms (part 1)

What is a tree?

A tree is a connected acyclic graph.

Connected means there is a path between two vertices in the
graph.

Acyclic means does not contain a cycle.

A spanning tree of an undirected graph G is a subgraph T that is
a tree (connected, acyclic graph) and span G (includes all V (G)).

7 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.

8 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.

4
24

10

11

18

23

21

7

9

8
16

14

5

graph G with weighted edges

8 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.

4
24

10

11

18

23

21

7

9

8
16

14

5

not connected

8 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.

4
24

10

11

18

23

21

7

9

8
16

14

5

not acyclic

8 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

Problem: given an undirected graph G with positive edge weights.
Find a minimum weight spanning tree

Theorem (Cayley, 1889)

There are nn−2 spanning trees on the complete graph on n vertices.

4
24

10

11

18

23

21

7

9

8
16

14

5

spanning tree T with cost 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

8 / 42 Graph Algorithms (part 1)

Minimum spanning tree (MST)

The origin of MST

Problem of finding an efficient coverage in Western Moravia
in Brno. To find the most economical construction of
electrical power network.

Czech scientist Otakar Borüvka developed the first known
algorithm for finding a minimum spanning tree, in 1926.

8 / 42 Graph Algorithms (part 1)

MST in real life (1)

A large graph and its MST

source: https://apprize.best/science/algorithms_2/algorithms_2.files/image091.jpg

9 / 42 Graph Algorithms (part 1)

https://apprize.best/science/algorithms_2/algorithms_2.files/image091.jpg

MST in real life (2)

MST of bicycle routes in North Seattle

source: http://www.flickr.com/photos/ewedistrict/21980840

10 / 42 Graph Algorithms (part 1)

http://www.flickr.com/photos/ewedistrict/21980840

MST in real life (3)

MST of a random graph

source: http://algo.inria.fr/broutin/gallery.html

11 / 42 Graph Algorithms (part 1)

http://algo.inria.fr/broutin/gallery.html

Applications of MST

Network design

telephone, electrical, hydraulic, TV cable, computer, or road
networks in satellite

Cluster analysis

Real-time face verification

Approximation algorithms for NP-hard problems

example: the Traveling Salesman Problem

12 / 42 Graph Algorithms (part 1)

Solving MST with brute-force approach

How do we solve MST with brute-force approach?

Brute-force algorithm:

1 List all possible spanning tree

2 Compute the weight of every spanning tree

3 Take the spanning tree that has the minimum weight

13 / 42 Graph Algorithms (part 1)

Solving MST with greedy algorithm (1)

1. For simplification, we assume the followings:

The graph is connected

Edge weights are distinct

Edge weights are not necessarily distances

Consequence: with the assumption, an MST exists and it is unique
(the only one)

7

6

12

2

5

4
13

8

16

20

3

14

1

11

2 10

9

no two edges

are equal

14 / 42 Graph Algorithms (part 1)

Solving MST with greedy algorithm (2)

2. Underlying principle:

The following properties hold for every spanning tree in a graph

Adding an edge that connects two vertices in a tree creates a
unique cycle.

Removing an edge from a tree breaks it into two separate
subtrees.

15 / 42 Graph Algorithms (part 1)

Solving MST with greedy algorithm (3)

3. Cut property

A cut in G is a partition of V (G) into two (nonempty) sets A and B.

A crossing edge connects a vertex in A and a vertex in B.

7

6

12

2

5

4
13

8

16

20

3

14

1

11

crossing edge separating
blue and black vertices

10

9

minimum-weight crossing edge
must be in the MST

16 / 42 Graph Algorithms (part 1)

Solving MST with greedy algorithm (4)

3. Cut property

A cut in G is a partition of V (G) into two (nonempty) sets A and B.

A crossing edge connects a vertex in A and a vertex in B.

Lemma (Cut property)

Given any cut, the crossing edge of minimum weight is in the MST.

Proof. Suppose minimum-weight crossing edge e is not in the MST T .

Adding e to T creates a cycle.

Some other edge f in the cycle must be a crossing edge.

T ′ = T − {e}+ {f } is also a spanning tree, and
cost(T ′) < cost(T).

Contradiction

17 / 42 Graph Algorithms (part 1)

Solving MST with greedy algorithm (5)

3. Cut property

f

creates a cycle

the MST does not contain e
but it contains f

5

3
e

adding e to MST

18 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

Input: G : undirected graph, w : weight function
Output: a set of edges that forms a MST

Start with all edges colored gray (gray color indicates the
edges are not in the solution);

Find cut with no black crossing edges; color its
minimum-weight edge black (black color indicates that the
edge is included in the solution);

Repeat until |V | − 1 edges are colored black (all black edges
are the MST).

19 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: The input graph G

20 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: The red edges form a cut of G

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Choose another cut

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

Figure: Take the minimum-weight edge in the cut and color it black

21 / 42 Graph Algorithms (part 1)

Greedy MST algorithm: correctness proof

Theorem

The greedy algorithm computes the MST.

Proof.

Any edge colored black is in the MST (by the cut property).

Fewer than |V | − 1 black edges ⇒ cut with no black crossing
edges. (consider cut whose vertices are one connected
component)

fewer than |V | − 1 edges colored black a cut with no black crossing edges

22 / 42 Graph Algorithms (part 1)

Greedy MST algorithm: correctness proof

Theorem

The greedy algorithm computes the MST.

Proof.

Any edge colored black is in the MST (by the cut property).

Fewer than |V | − 1 black edges ⇒ cut with no black crossing
edges. (consider cut whose vertices are one connected
component)

fewer than |V | − 1 edges colored black a cut with no black crossing edges

22 / 42 Graph Algorithms (part 1)

Greedy MST algorithm: correctness proof

Theorem

The greedy algorithm computes the MST.

Proof.

Any edge colored black is in the MST (by the cut property).

Fewer than |V | − 1 black edges ⇒ cut with no black crossing
edges. (consider cut whose vertices are one connected
component)

fewer than |V | − 1 edges colored black a cut with no black crossing edges

22 / 42 Graph Algorithms (part 1)

Kruskal’s and Prim’s
algorithms

23 / 42 Graph Algorithms (part 1)

Greedy MST algorithm: more efficient implementations

The greedy algorithm that is based on the “Cut property” is
difficult to implement, and the efficiency if the algorithm can still
be improved. We ask the following questions:

How to efficiently choose the cut?

How to efficiently find the minimum-weight edge?

1 Kruskal’s algorithm

2 Prim’s algorithm

3 Borüvka’s algorithm (this will not be discussed here)

24 / 42 Graph Algorithms (part 1)

Without the simplifying assumption...

What if edge weights are not distinct?
The MST is not unique. But the Greedy MST algorithm still works
(similar proof)

2
3

2

3

2
3

2

3

What if the graph is not connected?
Get Minimum Spanning Forest (MST for each connected
component)

25 / 42 Graph Algorithms (part 1)

Kruskal’s algorithm

26 / 42 Graph Algorithms (part 1)

Kruskal’s algorithm

This is to find a minimum spanning tree of an undirected edge-weighted
graph. Note that it finds a minimum spanning forest if the graph is not
connected).

This algorithm uses Greedy technique, and it first appeared in

Proceedings of the AMS, in 1956, and was written by Joseph Kruskal.

Input: a weighted graph G
Output: a set of vertices that forms an MST of G

Algorithm.

Consider edges in ascending order of weight;

Add next edge to tree T unless doing so would create a cycle.

27 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF
DH
FH
DF

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
16
20

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: The edges are ordered based on their weights

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH

Weight:
1

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge GH is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG

Weight:
1
2

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge AG is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH

Weight:
1
2
37

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge BH is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC

Weight:
1
2
3
4

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge BC is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC

Weight:
1
2
3
4
5

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge AC is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG

Weight:
1
2
3
4
5
6

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge EG is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE

Weight:
1
2
3
4
5
6
7

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge AE is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF

Weight:
1
2
3
4
5
6
7
8

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge BF is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE

Weight:
1
2
3
4
5
6
7
8
9

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge DE is included in the MST

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB

Weight:
1
2
3
4
5
6
7
8
9
10

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge AB is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG

Weight:
1
2
3
4
5
6
7
8
9
10
11

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge BG is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG

Weight:
1
2
3
4
5
6
7
8
9
10
11
12

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge DG is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge CF is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF
DH

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13
14

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge DH is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF
DH
FH

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
16

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge FH is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF
DH
FH
DF

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
16
20

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Figure: Edge DF is not included in the MST, otherwise it would create a
cycle

28 / 42 Graph Algorithms (part 1)

Proof of correctness of Kruskal’s MST algorithm

Theorem (Kruskal, 1956)

Kruskal’s algorithm computes the MST.

Proof. Let T be the graph output by Kruskal’s algorithm.

T is a spanning tree. Follows from the algorithm (we do not
choose an edge if it creates a cycle with the edges already
chosen. T is connected, oth. the edge of smallest weight that
crosses two components of T would have been chosen.

T has the minimal weight among the other spanning trees.
Follows from the cut property: given any cut, the crossing
edge of minimum weight is in the MST.

29 / 42 Graph Algorithms (part 1)

Proof of correctness of Kruskal’s MST algorithm

Question. How to check if adding an edge to T would create a cycle?

Alternative 1. Use DFS algorithm.

O(n)-time per cycle check, with n = |V |.

O(mn)-time overall, with n = |V | adn m = |E |.

Alternative 2. Use the union-find data structure.

Maintain a set for each connected component.

If v and w are in same component, then adding edge vw creates a
cycle.

To add vw to T , merge sets containing v and w .

30 / 42 Graph Algorithms (part 1)

Prim’s algorithm

31 / 42 Graph Algorithms (part 1)

Prim’s algorithm

Prims algorithm is also a Greedy algorithm.

Algorithm

It starts with an empty spanning tree;

The idea is to maintain two sets of vertices;

The first set contains the vertices already included in the
MST, the other set contains the vertices not yet included;

At every step, it considers all the edges that connect the two
sets, and picks the minimum weight edge from these edges;

After picking the edge, it moves the other endpoint of the
edge to the set containing MST.

32 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Input: a weighted graph G
Output: a set of vertices that forms an MST of G

Algorithm:

Initialize the solution set T = ∅;
Start with an arbitrary vertex and greedily grow T ;

Add to T the minimum weight edge with exactly on endpoint
in T ;

Repeat until T has size |V | − 1.

33 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE
AB
BG
DG
CF
DH
FH
DF

Weight:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
16
20

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Start with the weighted graph. Choose a random vertex, say H.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH

Weight:
1

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Look at the edges incident to H. GH is the edge of minimum weight.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH

Weight:
1

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include GH to the solution set.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG

Weight:
1
2

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Consider vertex {H,G}. Look at the edges incident to G or H.

AG is the edge of minimum weight.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG

Weight:
1
2

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include AG to the solution set.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH

Weight:
1
2
37

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

BH is the minimum-weight edge incident to {H,G ,A}.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH

Weight:
1
2
37

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include BH to the solution set.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC

Weight:
1
2
3
4

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

BC is the minimum-weight edge incident to {H,G ,A,B}.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC

Weight:
1
2
3
4

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include BC to the solution set.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG

Weight:
1
2
3
4
5
6

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

EG is the minimum-weight edge incident to {H,G ,A,B,C}
(AC cannot be chosen since it has two neighbors in the current solution)

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG

Weight:
1
2
3
4
5
6

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include GE to the solution set.

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF

Weight:
1
2
3
4
5
6
7
8

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

BF is the minimum-weight edge incident to {H,G ,A,B,C ,E}
(AE cannot be chosen since it has two neighbors in the current solution)

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF

Weight:
1
2
3
4
5
6
7
8

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include BF to the solution set

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE

Weight:
1
2
3
4
5
6
7
8
9

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

DE is the minimum-weight edge incident to {H,G ,A,B,C ,E ,F}

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE

Weight:
1
2
3
4
5
6
7
8
9

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

Include DE to the solution set

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm

Edge
GH
AG
BH
BC
AC
EG
AE
BF
DE

Weight:
1
2
3
4
5
6
7
8
9

7

6

12

2

5

4
13

8

16

20

3

14

11

2 10

9 1

A

C

E

B

F

D

H

G

{GH,AG ,BH,BC ,EG ,BF ,DE} is the solution of the MST

34 / 42 Graph Algorithms (part 1)

Prim’s MST algorithm: proof of correctness

Theorem (Jarnik 1930, Djikstra 1957, Prim 1959)

Prim’s algorithm computes the MST.

Proof. Let T be the graph output by Prim’s algorithm

T is a spanning tree. At each step, we add a vertex in G \ T
that has one neighbor in T . T is spanning because T
contains |V | − 1 edges, i.e. |V (T)| = |V (G)|.

T is an MST. Follows from the cut property: given any cut,
the crossing edge of minimum weight is in the MST.

35 / 42 Graph Algorithms (part 1)

Kruskal’s MST algorithm: proof of correctness

Question. How to check if adding an edge to T would create a cycle?

Alternative. Naive solution: use DFS.

O(|V |)-time per cycle check.

O(|E ||V |)-time overall.

Question. How to find cheapest edge with exactly one endpoint in S?

Alternative. Brute force: try all edges.

O(E)-time per spanning tree edge.

O(|E ||V |)-time overall.

36 / 42 Graph Algorithms (part 1)

Algorithm for MST in
Euclidean space

37 / 42 Graph Algorithms (part 1)

Euclidean MST

Problem: given n points in the plane, find an MST connecting
them, where the distances between point pairs are their Euclidean
distances.

Euclidean distance. Given two vertices a = (x1, y1) and
b = (x2, y2),

d(a,b) =
√

(x1 − x2)2 + (y1 − y2)2

Naive algorithm: Compute Θ(n2) distances and run Prim’s
algorithm.

Improvement. Exploit the geometric structure and do it in
O(n log n).

38 / 42 Graph Algorithms (part 1)

MST algorithm for graph in Euclidean space

Euclidean MST algorithm

Compute Voronoi diagram to get Delaunay triangulation.

Run Kruskal’s MST algorithm on Delaunay edges.

Complexity. O(n log n)

The Delaunay triangulation contains ≤ 3n edges since it is
planar.

O(n log n) for Voronoi.

O(n log n) for Kruskal

Lower bound. Any comparison-based Euclidean MST algorithm
requires Ω(n log n) comparisons.

39 / 42 Graph Algorithms (part 1)

MST algorithm for graph in Euclidean space

40 / 42 Graph Algorithms (part 1)

Application of Euclidean MST: k-clustering

k-Clustering: Divide a set of objects classify into k coherent groups.

Distance function: Numeric value specifying ”closeness” of two objects.

Goal: Divide into clusters so that objects in different clusters are far
apart.

Single-link: Distance between two clusters equals the distance between
the two closest objects (one in each cluster).

Single-link clustering: Given an integer k , find a k-clustering that
maximizes the distance between two closest clusters.

41 / 42 Graph Algorithms (part 1)

Single-link clustering algorithm

“Well-known” algorithm in science literature for single-link k-clustering:

Form |V | clusters of one object each.

Find the closest pair of objects such that each object is in a
different cluster, and merge the two clusters.

Repeat until there are exactly k clusters.

Observation: This is Kruskal’s algorithm (stop when there are k
connected components).

Alternative solution: Run Prim’s algorithm and delete k − 1 max weight
edges.

42 / 42 Graph Algorithms (part 1)

