
09 - Greedy Technique (part 2)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 11-15 April 2022

1 / 25 Greedy part 1



Table of contents

Principal of Greedy algorithm

Scheme of Greedy algorithm

Some examples of Greedy implementation

2 / 25 Greedy part 1



Part 2:
4. Integer (1/0) knapsack

problem

3 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (1)

Problem: given n objects and a knapsack with capacity K . Every
object has weight wi and profit pi .

How to chose the objects to be included in the knapsack s.t. the
total profit is maximum? The total weight of the objects should
not exceed the capacity of the knapsack.

The mathematical formulation of 1/0 knapsack problem:

Maximize F =
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ K

and xi = 0 or xi = 1, for i = 1, 2, . . . , n

4 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (2)

Recall that the time complexity with exhaustive search is O(n · 2n).
Why?

The greedy approach:

Include the object one-by-one to the knapsack. Once it is
included, it cannot be undone.

Some greedy-heuristically strategies that can be used to
choose the objects in the knapsack:

1 Greedy by profit: at each step, choose the object with
maximum profit

2 Greedy by weight: at each step, choose the object of minimum
weight

3 Greedy by density: at each step, choose the object with the
maximum value of pi/wi

However, none of the strategies above guarantees an optimal
solution.

5 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (3)

Example

Given four objects as follows, and a knapsack of capacity M = 16.

(w1, p1) = (6, 12); (w2, p2) = (5, 15)

(w3, p3) = (10, 50); (w4, p4) = (5, 10)

Object properties Greedy by Optimal solution

i wi pi pi/wi profit weight density
1 6 12 2 0 1 0 0
2 5 15 3 1 1 1 1
3 10 50 5 1 0 1 1
4 5 10 2 0 1 0 0

Solution set {3, 2} {2, 4, 1} {3, 2} 15
Total weight 20 20 20 15
Total profit 28.2 31.0 31.5 65

6 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (4)

Example

Given six objects as follows:

(w1, p1) = (100, 40); (w2, p2) = (50, 35); (w3, p3) = (45, 18)

(w4, p4) = (20, 4); (w5, p5) = (10, 10); (w6, p6) = (5, 2)

and a knapsack of capacity M = 100.

Object properties Greedy by Optimal solution

i wi pi pi/wi profit weight density
1 100 40 0.4 1 0 0 0
2 50 35 0.7 0 0 1 1
3 45 18 0.4 0 1 0 1
4 20 4 0.2 0 1 1 0
5 10 10 1.0 0 1 1 0
6 5 2 0.4 0 1 1 0

Total weight 100 80 85 100
Total profit 40 34 51 55

7 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (4)

Example

Given six objects as follows:

(w1, p1) = (100, 40); (w2, p2) = (50, 35); (w3, p3) = (45, 18)

(w4, p4) = (20, 4); (w5, p5) = (10, 10); (w6, p6) = (5, 2)

and a knapsack of capacity M = 100.

Object properties Greedy by Optimal solution

i wi pi pi/wi profit weight density
1 100 40 0.4 1 0 0 0
2 50 35 0.7 0 0 1 1
3 45 18 0.4 0 1 0 1
4 20 4 0.2 0 1 1 0
5 10 10 1.0 0 1 1 0
6 5 2 0.4 0 1 1 0

Total weight 100 80 85 100
Total profit 40 34 51 55

7 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (5)

Conclusion:

Is greedy algorithm always able to find an optimal solution for the
integer knapsack problem?

NO! Homework: Find an example where the three approaches do
not give an optimum solution!

8 / 25 Greedy part 1



4. Integer (1/0) knapsack problem (5)

Conclusion:

Is greedy algorithm always able to find an optimal solution for the
integer knapsack problem?

NO! Homework: Find an example where the three approaches do
not give an optimum solution!

8 / 25 Greedy part 1



5. Fractional knapsack problem

9 / 25 Greedy part 1



5. Fractional knapsack problem (1)

The fractional knapsack problem is a variant of knapsack problem,
but the solution is not necessarily integer, it can be in fraction.

Problem formulation:

Maximize F =
n∑

i=1

pixi

s.t.
n∑

i=1

wixi ≤ K

and 0 ≤ xi ≤ 1, for i = 1, 2, . . . , n

Question: is it possible to solve the problem with exhaustive
search?

10 / 25 Greedy part 1



5. Fractional knapsack problem (2)

Question: is it possible to solve the problem with exhaustive
search?

Since 0 ≤ xi ≤ 1, then there are an infinite number of possibilities
of xi .

This problem is not discrete, but a continuous problem, so it is not
possible to solve with exhaustive search.

11 / 25 Greedy part 1



5. Fractional knapsack problem (3)

Question: is it possible to solve the problem with the greedy
approach?

Example

Given three objects as follows:

(w1, p1) = (18, 25); (w2, p2) = (15, 24); (w3, p3) = (10, 15)

and a knapsack of capacity M = 20.

Object properties Greedy by

i wi pi pi/wi profit weight density
1 18 25 1.4 1 0 0
2 15 24 1.6 2/15 2/3 1
3 10 15 1.5 0 1 1/2

Total weight 20 20 20
Total profit 28.2 31.0 31.5

Optimal solution: X = (0, 1, 1/2), and the maximum profit is 31.5.12 / 25 Greedy part 1



5. Fractional knapsack problem (4)

Theorem (Greedy by density gives an optimal solution)

If p1
w1
≥ p2

w2
≥ · · · ≥ pn

wn
, then the greedy algorithm with the

strategy of choosing the maximum pi
wi

gives an optimal solution.

Proof.

Homework! (give a similar taste of proof as for the “Activity
Selector Problem”)

Algorithm:

Compute pi
wi

for i = 1, 2, . . . , n

For this strategy to work, the pi
wi

’s are ordered in descending
order.

13 / 25 Greedy part 1



5. Fractional knapsack problem (5)

1: procedure FractionalKnapsack(C : objects set, K : real)
2: for i ← 1 to n do
3: x [i ]← 0 . x is the solution set

4: end for
5: i ← 0; totalwt ← 0; intFrac ← True . ’totalwt’: total weight, and ’intFrac’:

boolean var indicating if current object can be included fully

6: while (i ≤ n) and intFrac do
7: i ← i + 1
8: if totalwt + w [i ] ≤ K then
9: x [i ]← 1 . Include object i to knapsack

10: totalwt← totalwt + w [i ] . Include the fraction of object i to total weight

11: else
12: intFrac ← False
13: x [i ]← K−totalwt

w [i ] . Only a fraction of object i can be included to the knapsack

14: end if
15: end while
16: return x

17: end procedure
14 / 25 Greedy part 1



6. Huffman coding

15 / 25 Greedy part 1



6. Huffman coding (1)

The principal of encoding and decoding

Encoding/decoding is the translation of a message that is easily
understood.

Encoding: the way any character is understood within the
computer storage or transmission from one machine to another
machine.

Decoding: the process of turning back an encoded message to the
original message.

16 / 25 Greedy part 1



7. Huffman coding (2)

Fixed-length versus Variable-length codes

Fixed length encoding scheme uses a fixed number of bytes to
represent different characters.

Variable length encoding scheme uses different number of bytes to
represent different characters

17 / 25 Greedy part 1



6. Huffman coding (3)

Huffman coding is used for data compression.

Fixed-length code

Given a message of length 100,000 characters with frequency of a
letter appears in the message as the following:

Character a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Encoding 000 001 010 011 100 111

Example: the encoding of ’bad’ is 001000011

With this method, the encoding of 100,000 characters needs
300,000 bits.

The principal of Huffman coding:

the more often a character appears, the shortest its encoding,
and vice versa.

18 / 25 Greedy part 1



6. Huffman coding (3)

Huffman coding is used for data compression.

Fixed-length code

Given a message of length 100,000 characters with frequency of a
letter appears in the message as the following:

Character a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Encoding 000 001 010 011 100 111

Example: the encoding of ’bad’ is 001000011

With this method, the encoding of 100,000 characters needs
300,000 bits.

The principal of Huffman coding:

the more often a character appears, the shortest its encoding,
and vice versa.

18 / 25 Greedy part 1



6. Huffman coding (4)

Variable-length code (Huffman code)

Character a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Encoding 0 101 100 111 1100 1100

Example: the encoding of bad is 1010111

With this method, the encoding of 100,000 characters needs:

(0.45× 1 + 0.13× 3 + 0.12× 3 + 0.16× 3 + 0.09× 4 + 0.05× 4)× 105

= 224, 000 bits

Ratio of compression = 300,000−224,000
300,000 × 100% = 25, 5%.

19 / 25 Greedy part 1



6. Huffman coding (5)

The greedy algorithm to form Huffman coding aims to
minimize the length of binary code for all characters in the
message (M1,M2, . . . ,Mn).

We build a weighted binary tree. Every leave node indicates
the character in the message, and internal nodes indicate the
merging of those characters.

Every edge in the tree is given label 0 or 1 consistently (e.g.:
left given ’0’ and right given ’1’).

Minimizing the binary code for every character is equivalent to
minimizing the length of path from the root to the leaves.

20 / 25 Greedy part 1



6. Huffman coding (6)

Algorithm:

1 Compute the frequency of every character in the message.
Represent every character by a tree with a single node, and every
node is assigned with the frequency of the corresponding character.

2 We apply the greedy strategy: at each step, merge two trees that
have the smallest frequencies in a root. The new root has frequency
equals to the sum of the frequencies of the two trees that composed
it.

3 We repeat the 2nd step until we finally obtain a single Huffman
tree. It forms a binary tree.

4 We label every edge of the tree by 0 or 1 (e.g. left-oriented edge is
labeled 0 and right-oriented edge is labeled 1.

5 Every path from the root the each leaf of the tree represents the
binary string for every character, with frequency as indicated on the
corresponding leaf.

21 / 25 Greedy part 1



6. Huffman coding (7)

What is the time complexity?
O(n log n).

Use a heap to store the weight of each tree, each iteration
requires O(log n)-time to determine the cheapest weight and
insert the new weight.

There are O(n) iterations, one for each item.

22 / 25 Greedy part 1



6. Huffman coding (8)

Exercise: Given a message of length 100. The message is
composed with letters a, b, c , d , e, f . The frequency of each letter
in the message is as follows:

Character a b c d e f

Frequency 45% 13% 12% 16% 9% 5%

Find the Huffman code for every character in the message.

23 / 25 Greedy part 1



6. Huffman coding (10)

cbfed : 55

fed : 30cb : 25

c : 12 b : 13 fe : 14 d : 16

e : 9

a : 45

acbfed : 100

f : 5

0 1

0 1

0 0

0

1 1

1

24 / 25 Greedy part 1



6. Huffman coding (11)

Huffman code:

a : 0

b : 101

c : 100

d : 111

e : 1101

f : 1100

25 / 25 Greedy part 1


