
09 - Greedy Technique (part 1)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 4-8 April 2022

1 / 33 Greedy part 1

Table of contents

Principal of Greedy algorithm

Scheme of Greedy algorithm

Some examples of Greedy implementation

2 / 33 Greedy part 1

Optimization problem

An optimization problem is the problem of finding the best solution
from all feasible solutions.

Types of optimization problems

Maximization

Example: Integer knapsack problem

Minimization

Example: Graph coloring problem, TSP

Standard form:

minimize f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

3 / 33 Greedy part 1

Greedy algorithm

Definition

Greedy algorithm is an algorithmic paradigm that builds up a
solution piece by piece, always choosing the next piece that offers
the most obvious and immediate benefit.

This is the most popular and the simplest algorithm to solve
optimization problems (maximization and minimization).

Greedy principal: Take what you can get now!

Greedy algorithm builds the solution step-by-step.

In each step, there are many possible choices. We take the
best decision in each step, i.e. we choose the local optimum,
in order to reach the global optimum.

4 / 33 Greedy part 1

Greedy algorithm

Example (Coin exchange problem)

We have a check of 42 in hand. There are coins of nominal 1, 5,
10, and 25. We want to exchange the money with the coins. What
is the minimum number of coins needed in the exchange.

There are many possible combinations of coins. With brute-force
algorithm, we can simply list all possibilities:

42 = 1 + 1 + · · ·+ 1 → 42 coins

42 = 5 + 1 + 1 + · · ·+ 1 → 38 coins

... etc.

With greedy algorithm, at each step, we take a coin with
maximum value as many as possible.

42 = 25 + 10 + 5 + 1 + 1

So 5 coins are enough.

5 / 33 Greedy part 1

Scheme of greedy algorithm

Components of greedy algorithm:

A candidate set - consists of candidate of solution that is
created from the set.

A selection function - used to choose the best candidate to be
added to the solution.

A feasibility function - used to determine whether a candidate
can be included in the solution (feasible/unfeasible).

An objective function - used to assign a value to a solution or
a partial solution (maximizing or minimizing).

A solution function - used to indicate whether a complete
solution has been reached.

6 / 33 Greedy part 1

Scheme of greedy algorithm

Components analysis of the coin exchange problem:

Candidate set: the set of coins {1, 5, 10, 25}.

Selection function: choose the coin that has maximum value.

Feasibility function: check if the sum of coins after taking a
new coin does not exceed the amount of money.

Objective function: minimizing the number of coins used.

Solution function: the set of selected coins {1, 10, 25}.

7 / 33 Greedy part 1

Scheme of greedy algorithm

Algorithm 1 General scheme of greedy algorithm
1: procedure Greedy(C : candidate set)
2: S ← {} . S is the solution function

3: while (not SOLUTION(S)) and (C 6= {}) do
4: x ← SELECTION(C)
5: C ← C − {x}
6: if FEASIBLE(S ∪ {x}) then
7: S ← S ∪ {x}
8: end if
9: end while

10: if SOLUTION(S) then return S
11: else print(’No solution exists’)
12: end if

13: end procedure

At the end of iteration (“if condition”), we have a local optimum solution.

At the end of the while loop, we obtain the global optimum solution (if
any)

8 / 33 Greedy part 1

Solving problems with greedy algorithm

Some examples:

1 Coin exchange problem

2 Activity selection problem

3 Time minimization in the system

4 Integer knapsack problem

5 Fractional knapsack problem

6 Huffman coding

7 Traveling Salesman Problem

9 / 33 Greedy part 1

1. Coin exchange problem

10 / 33 Greedy part 1

1. Coin exchange problem (1)

Problem formulation:

The amount of money want to be exchanged: M

The set of available coins: {c1, c2, . . . , cn}
The solution set: X = {x1, x2, . . . , xn}, where xi = 1 if ai is
chosen and xi = 0 otherwise

The objective function:

Minimize F =
n∑

i=1

xi

subject to
n∑

i=1

cixi = M

11 / 33 Greedy part 1

1. Coin exchange problem (2)

Solution by exhaustive search

Since X = {x1, x2, . . . , xn} and xi ∈ {01}, then there are 2n

possible solutions.

To evaluate the objective function for each solution candidate,
we need O(n)-time

So, the time complexity of the exhaustive search is: O(n · 2n).

12 / 33 Greedy part 1

1. Coin exchange problem (3)

Algorithm 2 General scheme of greedy algorithm

1: procedure CoinExchange(C : coin set, M: integer)
2: S ← {}
3: while (

∑
(all coins in S) 6= M) and (C 6= {}) do

4: x ← coin of maximum value
5: C ← C − {x}
6: if

∑
(all coins in S) + value(x) ≤ M then

7: S ← S ∪ {x}
8: end if
9: end while

10: if
∑

(all coins in S) = M then
11: return S
12: else
13: print(’No feasible solution’)
14: end if
15: end procedure

13 / 33 Greedy part 1

1. Coin exchange problem (4)

Time complexity:

Choosing a coin with maximum value: O(n) (using
brute-force to get max).

The while loop is repeated n times (maximum), so the overall
complexity is: O(n2).

If the coin is ordered in descending order, the complexity
becomes O(n), because choosing a coin with max value only
takes O(1)-time.

14 / 33 Greedy part 1

2. Activity selection problem

15 / 33 Greedy part 1

2. Activity selection problem (1)

Problem: given n activities S = {1, 2, . . . , n}, that will use a
resource (for instance, meeting room, studio, processor, etc.).

Suppose that a resource can only be used to do one activity at one
time. Each time an activity occupies a resource, then the other
activities cannot use it until the first activity is finished.

Each activity i starts at time si and ends at time fi , where si ≤ fi .
Two activities i and j is called compatible if the interval [si , fi] and
[sj , fj] do not intersect.

Our goal is to choose as many activities as possible that can be
served by a resource.

16 / 33 Greedy part 1

2. Activity selection problem (2)

Example (Activity selection problem)

Given n = 11 activities with the starting-ending time as given in
the following table:

i si fi
1 1 4
2 3 5
3 4 6
4 5 7
5 3 8
6 7 9
7 10 11
8 8 12
9 8 13

10 2 14
11 13 15

17 / 33 Greedy part 1

2. Activity selection problem (3)

Solution with exhaustive search:

1 List all subsets of the set of n activities.

2 Evaluate each subset, check if the solution is compatible.

3 If yes, then the subset is a solution candidate.

4 Choose the solution candidate with the maximum number of
activities

5 The time complexity of the algorithm is O(n · 2n). Why?

18 / 33 Greedy part 1

2. Activity selection problem (4)

The greedy approach:

1 Order the activities based on the end-time in ascending order.

2 At each step, choose the activity whose starting time is
greater than or equal to the end-time of the activity that was
chosen before

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 3 6 7 11

Strategy: at each step, we choose the activity of the smallest
index that can be done in the available time-slot.

Set of solution: {1, 3, 6, 7, 11}

19 / 33 Greedy part 1

2. Activity selection problem (5)

Algorithm 3 Greedy Activity Selector

1: procedure ActvtySlctr((s1, . . . , sn), (f1, . . . , fn))
2: n← length(s) . s = (s1, . . . , sn)

3: A← {1} . A is the solution function

4: j ← 1
5: for i ← 2 to n do
6: if si ≥ fj then . si : starting time of activity i , f (j): finishing time of activity j

7: A← A ∪ {i}
8: j ← i
9: end if

10: end for
11: end procedure

Time complexity: O(n). Why?

20 / 33 Greedy part 1

2. Activity selection problem (6)

Theorem

The greedy algorithm gives an optimal solution for the activity
selection problem.

Proof idea.

We wanted to show that the schedule, A, chosen by greedy
was optimal.

To do this, we showed that the number of activities in A was
at least as large as the number of activities in any other
non-overlapping set of activities.

To show this, we considered any arbitrary, non-overlapping set
of activities, B. We showed that we could replace each
activity in B with an activity in A.

21 / 33 Greedy part 1

2. Activity selection problem (7)

Proof.

Let S = {1, 2, . . . , n} be the set of activities that are ordered based on
the finishing time, A be the optimal solution, and B be the output of the
greedy algorithm. Moreover, they are ordered based on the finishing time.

Let ax be the first activity in A that is different than an activity in B. So:

A = a1, a2, . . . , ax−1, ax , ax+1, . . .

B = a1, a2, . . . , ax−1, bx , bx+1, . . .

Since B was chosen by the Greedy algorithm, bx must have a finishing
time earlier than the finishing time of ax .

So, A′ = A− {ax} ∪ {bx} = a1, a2, . . . , ax−1, bx , bx+1, . . . (i.e. replacing
ax with bx in A) is also a feasible solution.

Continuing this process, we see that we can replace each activity in A

with an activity in B.

22 / 33 Greedy part 1

2. Activity selection problem (8)

Another proof alternatives (as explained in class)

Proof.

Let S = {1, 2, . . . , n} be the set of activities that are ordered based on
the finishing time.

Suppose that A ⊆ S be an optimal solution, where the elements in A are
also ordered based on the finishing time, and the first element of A is k1.

If k1 = 1, then A is begun with a greedy choice (as in the algorithm).
Otherwise, we show that B = (A− {k1}) ∪ {1} (a solution begin with
the greedy choice 1 is another optimal solution).

Since f1 ≤ fk1 (bcs 1 is the first element of S), and the activities in A are

compatible, then the activities in B are also compatible. Since |A| = |B|,
then B is an optimal solution. Hence, there is also an optimal solution

that is begun with a greedy choice.

23 / 33 Greedy part 1

3. Time minimization in the
system

24 / 33 Greedy part 1

3. Time minimization in the system (1)

Problem: a server (processor, cashier, customer service, etc.) has
n clients that must be served. The time to serve client i is ti . How
to minimize the total time in the system (including the waiting
time)?

T =
n∑

i=1

time spent in the system

Remark. This problem is equivalent to minimizing the average
time of clients in the system.

25 / 33 Greedy part 1

3. Time minimization in the system (2)

Example

There are three clients with serving time: t1 = 5, t2 = 10, and
t3 = 3.

Solution

The possible order of the clients:

1,2,3: 5 + (5 + 10) + (5 + 10 + 3) = 38

1,3,2: 5 + (5 + 3) + (5 + 3 + 10) = 31

2,1,3: 10 + (10 + 5) + (10 + 5 + 3) = 43

2,3,1: 10 + (10 + 3) + (10 + 3 + 5) = 41

3,1,2: 3 + (3 + 5) + (3 + 5 + 10) = 29

3,2,1: 3 + (3 + 10) + (3 + 10 + 5) = 34

26 / 33 Greedy part 1

3. Time minimization in the system (3)

Other problems similar to minimizing time in the system is optimal
storage on tapes or music storage in a cassette tape (analog system
with sequential storage system).

The programs/musics are saved in the tape sequentially. The length
of every song i is ti (in second/minute). To retrieve and play a
song, the tape is initially placed in the beginning.

If the songs in the tape are saved in the order X = {x1, x2, . . . , xn},
then the time needed to play the song xj to the end is
Tj =

∑
1≤k≤j txk .

If all songs are often played, the mean retrieval time / MRT is
1
n

∑
1≤j≤n Tj .

Here we are asked to find a permutation of n songs s.t. if the songs
are saved in the tape, then the MRT is minimum. Minimizing MRT
is equivalent to minimizing the following:

d(X) =
1

n

∑
1≤j≤n

∑
1≤k≤j

txk or d(X) =
∑

1≤j≤n

∑
1≤k≤j

txk

27 / 33 Greedy part 1

3. Time minimization in the system (4)

Solution with the exhaustive search

The order of clients in the system is a permutation. The
number of permutation of n elements is n!.

To evaluate the objective function of a permutation needs
O(n)-time

The time complexity of exhaustive search is O(n · n!).

28 / 33 Greedy part 1

3. Time minimization in the system (5)

Solution with the greedy algorithm

Strategy: At each step, choose the client that needs the minimum
serving time among all clients that have not been served.

Algorithm 4 Clients Scheduling
1: procedure ClientsScheduling(n)
2: S ← {} . S is the solution function

3: while C 6= {} do . C is the solution candidate

4: i ← client with minimum t[i] in C . ti is the serving time of client i

5: C ← C − {i}
6: S ← S ∪ {i}
7: end while
8: return S

9: end procedure

Time complexity: O(n2). Why?

29 / 33 Greedy part 1

3. Time minimization in the system (6)

If the clients are ordered based on the serving time (in ascending
order), then the complexity of the greedy algorithm is O(n).

Algorithm 5 Clients Scheduling
1: procedure ClientsScheduling2(n)
2: input: clients (1, 2, . . . , n) ordered ascendingly based on ti

3: for i ← 1 to n do
4: print(i)
5: end for

6: end procedure

Remark. The greedy algorithm for clients scheduling based on the
serving time with ascending order always produces an optimal
solution.

30 / 33 Greedy part 1

3. Time minimization in the system (7)

Theorem

If t1 ≤ t2 ≤ · · · ≤ tn, then the order ij = j , 1 ≤ j ≤ n minimizes:

T =
n∑

k=1

k∑
j=1

tij

for all possible permutations of ij , 1 ≤ j ≤ n.

Proof available in Ellis Horrowitz & Sartaj Sahni, Computer
Algorithms, 1998). See next slide.

31 / 33 Greedy part 1

3. Time minimization in the system (8)

32 / 33 Greedy part 1

to be continued...

33 / 33 Greedy part 1

