
08 - Transform and Conquer

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 March 2022

1 / 32 Transform and Conquer

Table of contents

Principal of Transform-and-Conquer

Variations of Transform-and-Conquer

Instance simplification
Representation change
Problem reduction

Problem reduction

2 / 32 Transform and Conquer

Principal of Transform-and-Conquer (1)

3 / 32 Transform and Conquer

Principal of Transform-and-Conquer (1)

Three major variations:

1 Instance simplification: transformation to a simpler or more
convenient instance of the same problem.

2 Representation change: transformation to a different
representation of the same instance.

3 Problem reduction: transformation to an instance of a
different problem for which an algorithm is already available.

4 / 32 Transform and Conquer

Instance simplification

5 / 32 Transform and Conquer

1. Presorting (1)

Many questions about a list/array are easier to answer if the
list is sorted.

The time efficiency of algorithms that involve sorting may
depend on the efficiency of the sorting algorithm being used.

Recall sorting algorithms:

Selection sort, bubble sort, and insertion sort: complexity
Θ(n2).

Merge sort and Quick sort: complexity Θ(n log n) in the
average case but is quadratic in the worst case.

6 / 32 Transform and Conquer

1. Presorting (2): example

Example (Checking element uniqueness in an array)

Problem: Given an array, check if there exist equal elements.

Brute-force:

Compare pairs of the arrays elements until either two
equal elements were found or no more pairs were left.
Complexity: Θ(n2).

With presorting:

sort the array first and then check only the consecutive
elements: if the array has equal elements, a pair of them
must be next to each other, and vice versa.

7 / 32 Transform and Conquer

1. Presorting (2): pseudocode

Checking uniqueness in an array with presorting

Algorithm 1 Checking uniqueness in an array

1: procedure Unique(A[0..n − 1])
2: input: an ordorable array A[0..n − 1]
3: output: “True” if A has no equal elements, “False” otherwise
4: Sort the array A . Implement the presorting

5: for i ← 0 to n − 2 do
6: if A[i] = A[i + 1] then . Compare the adjacent elements

7: return false
8: end if
9: end for

10: return true

11: end procedure

8 / 32 Transform and Conquer

1. Presorting (2): time complexity

TC = time on sorting + time on checking consecutive elements

Time for checking consecutive elements: ≤ n − 1

So the TC depends on the sorting algorithm used in presorting

If use Selection sort, etc., then TC in Θ(n2)

If use Merge sort/Quick sort, then TC in Θ(n log n)

T (n) = Tsort(n) + Tscan(n) ∈ Θ(n log n) + Θ(n) = Θ(n log n)

This gives a better complexity than brute-force approach.

9 / 32 Transform and Conquer

2. Searching problem

Without sorting: Sequential search (brute-force), complexity
Θ(n)

With sorting: binary search (recursive, needs sorted array)

T (n) = Tsort(n)+Tsearch(n) = Θ(n log n)+Θ(log n) = Θ(n log n)

So, in this case, Sequential Search is the better option.

10 / 32 Transform and Conquer

Representation change

11 / 32 Transform and Conquer

1. Gaussian elimination

Systems of two linear equations (you are already familiar with):{
a11x + a12y = b1

a21x + a22y = b2

where: aij and bi for i , j ∈ {1, 2} is a real number; x and y are unknown
variables.

Problem

Given a system of n equations in n unknown variables:
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ annxn = bn

The task is to solve the system, i.e. find the values [x1, x2, . . . , xn]

12 / 32 Transform and Conquer

1. Gaussian elimination

Obvious algorithm: use repeated substitution/elimination as in
the case n = 2.

More elegant way: 3. Gaussian elimination

The idea is to transform a system of n linear equations in n
unknowns to an equivalent system (i.e., a system with the
same solution as the original one) with an upper- triangular
coefficient matrix, a matrix with all zeros below its main
diagonal.

We aim to transfer it into:
a′11x1 + a′12x2 + · · ·+ a′1nxn = b′1

a′22x2 + · · ·+ a′2nxn = b′2
...

a′nnxn = b′n

13 / 32 Transform and Conquer

1. Gaussian elimination

In matrix notations, this can be written as:

A(x) = b ⇒ A′x = b′

where:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

an1 an2 . . . ann

 , b =


b1
b2
...
bn

 , A′ =


a′11 a′12 . . . a′1n
0 a′22 . . . a′2n
...
0 0 . . . a′nn

 , b′ =


b′1
b′2
...
b′n



Why is the system with the upper-triangular coefficient matrix better
than a system with an arbitrary coefficient matrix?

Because we can easily solve the system with an upper-triangular
coefficient matrix by back substitutions.

14 / 32 Transform and Conquer

1. Gaussian elimination

Solving the linear system

A′x = b ⇔


a′11 a′12 . . . a′1(n−1) a′1n
0 a′22 . . . a′2(n−1) a′1n
...
0 0 . . . a′(n−1)(n−1) a′(n−1)n

0 0 . . . 0 a′nn




x1
x2
...

xn−1

xn

 =


b′1
b′2
...

b′n−1

b′n



First, we can immediately find the value of xn from the last
equation, namely: a′nnxn = b′n.

Then we can substitute this value into the next to last equation,
namely a′(n−1)(n−1)xn−1 + a′(n−1)nxn = b′n to get xn−1.

...and so on, until we substitute the known values of the last n − 1
variables into the first equation, from which we find the value of x1.

15 / 32 Transform and Conquer

1. Gaussian elimination

How can we get from a system with an arbitrary coefficient matrix
A to an equivalent system with an upper-triangular coefficient
matrix A?

We can do that through a series of (the so-called) elementary
operations.

exchanging two equations of the system;

replacing an equation with its nonzero multiple;

replacing an equation with a sum or difference of this
equation and some multiple of another equation

16 / 32 Transform and Conquer

1. Gaussian elimination

Example: Implementation of Gaussian elimination (A. Levitin, page 236)

17 / 32 Transform and Conquer

1. Gaussian elimination

For the pseudocode of the algorithm and computing the time
complexity, see the next slides (this is not discussed in class).

Read page 236-238 of the book A. Levitin for an explanation!

18 / 32 Transform and Conquer

1. Gaussian elimination

Here is pseudocode of the first stage, called forward elimination, of
the algorithm.

19 / 32 Transform and Conquer

1. Gaussian elimination

An improvement of the previous algorithm (page 237).

20 / 32 Transform and Conquer

1. Gaussian elimination

Time complexity of “BetterForwardElimination” (page 238).

21 / 32 Transform and Conquer

2. Gaussian elimination for LU-decomposition

Other examples of “Instance simplification”

Lower-Upper (LU) Decomposition: factor a matrix as the product of
a lower triangular matrix and an upper triangular matrix. Example:

How is this decomposition useful?

To solve the linear system Ax = b, we can decompose A into
A = LU, so Ax = b ⇔ LUx = b
Now assume Ux = y , so LUx = b ⇔ Ly = b
Solve the linear system Ly = b, so we obtain y .
Then solve the linear system Ux = y , so we obtain x .
Here, solving Ly = b or Ux = y can be done easily by
substitution, because L is a lower-triangular matrix and U is an
upper-triangular matrix.

22 / 32 Transform and Conquer

Problem reduction

23 / 32 Transform and Conquer

Problem reduction

A mathematician joke of problem reduction

Professor X, a noted mathematician, noticed that when his wife wanted

to boil water for their tea, she took their kettle from their cupboard, filled

it with water, and put it on the stove. Once, when his wife was away, the

professor had to boil water by himself. He saw that the kettle was sitting

on the kitchen counter. What did Professor X do? He put the kettle in

the cupboard first and then proceeded to follow his wifes routine.

24 / 32 Transform and Conquer

Problem reduction

Problem reduction: If you need to solve a problem, reduce it to
another problem that you know how to solve.

Figure: Problem reduction strategy

25 / 32 Transform and Conquer

1. Computing the Least Common Multiple (1)

The least common multiple of two positive integers m and n, denoted
lcm(m, n), is defined as the smallest integer that is divisible by both m
and n.

Example: lcm(24, 60) = 120, and lcm(11, 5) = 55.

Middle-school method for computing lcm:

Find the prime factorizations of m and n;

Compute the product of all the common prime factors of m and n;

Multiply with all the prime factors of m that are not in n, and all
the prime factors of n that are not in m.

Example:

24 = 2 · 2 · 2 · 3
60 = 2 · 2 · 3 · 5

lcm(24, 60) = (2 · 2 · 3) · 2 · 5 = 120

26 / 32 Transform and Conquer

1. Computing the Least Common Multiple (2)

Note that gcd(m, n) can be computed by taking product of all common
prime divisors of m and n.

Example:

24 = 2 · 2 · 2 · 3
60 = 2 · 2 · 3 · 5

gcd(24, 60) = 2 · 2 · 3 = 12

We can see that the following relation holds:

m · n = gcd(m, n) · lcm(m, n)⇔ lcm(m, n) =
m · n

gcd(m, n)

So, the problem of finding lcm is reduced to finding gcd, and this can be

solved using Euclidean gcd algorithm.

27 / 32 Transform and Conquer

2. Counting Paths in a Graph

Problem: Given a graph G , and vertices vi and vj in G . Find the
number of paths in G from vi to vj .

Lemma (The number of different paths)

Let G be an undirected graph with adjacency matrix A, w.r.t. the
ordering v1, v2, . . . , vn of V (G). The number of different paths of length
r > 0 from vi to vj , equals to the (i , j)-th entry of Ar .

So, this problem reduced to computing the power of square matrices.

Example:

a

c d

b
0

1

1

1

1

0

0

0

1

0

0

1

1

0

1

0

a

b

c

d

a b c d

A =

3

0

1

1

0

1

1

1

1

1

2

1

1

1

1

2

a

b

c

d

a b c d

A2 =

Example: the number of paths of length 2 from a to c equals to the

entry (a, c) of matrix A2, namely 1 (the only path is a− d − c).

28 / 32 Transform and Conquer

3. Reduction of Optimization Problems (1)

Maximization problem: a problem that asks to find a maximum of
some function.

Minimization problem: a problem that asks to find a minimum of
some function.

Suppose now that you need to find a minimum of some function f (x)
and you have an algorithm for function maximization. How can you take
advantage of the latter?

We have relation
min f (x) = −max[−f (x)]

max f (x) = −min[−f (x)]

29 / 32 Transform and Conquer

3. Reduction of Optimization Problems (2)

Figure: Relationship between minimization and maximization problems:
min f (x) = −max[−f (x)]

30 / 32 Transform and Conquer

4. Linear programming (1)

Linear programming: a problem of optimizing a linear function of several
variables subject to constraints in the form of linear equations and linear
inequalities.

Many problems of optimal decision making can be reduced to an
instance of the linear programming problem.

Example

Consider a university endowment that needs to invest $100 million. This
sum has to be split between three types of investments: stocks, bonds,
and cash. The endowment managers expect an annual return of 10%,
7%, and 3% for their stock, bond, and cash investments, respectively.
Since stocks are more risky than bonds, the endowment rules require the
amount invested in stocks to be no more than one-third of the moneys
invested in bonds. In addition, at least 25% of the total amount invested
in stocks and bonds must be invested in cash. How should the managers
invest the money to maximize the return?

31 / 32 Transform and Conquer

4. Linear programming (2)

A mathematical model of this problem: Let x , y , and z be the
amounts (in millions of dollars) invested in stocks, bonds, and cash,
respectively.

maximize 0.10x + 0.07y + 0.03z

subject to x + y + z = 100

x ≤ 1

3
y

z ≥ 0.25(x + y)

x ≥ 0, y ≥ 0, z ≥ 0

Definition (General formulation of linear program)

maximize (or minimize) c1x1 + · · ·+ cnxn

subject to ai1x1 + · · ·+ ainxn ≤ bi , for i = 1, . . . ,m

(Here, ≤ can be replaced with ≥ or =)

x1 ≥ 0, . . . , xn ≥ 0

32 / 32 Transform and Conquer

