
07 - Decrease and Conquer

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 March 2022

1 / 27 Decrease and Conquer



Table of contents

Principal of Decrease-and-Conquer

Decrease by a constant

Decrease by a constant factor

Decrease by a variable size

2 / 27 Decrease and Conquer



Principal of Decrease-and-Conquer (1)

This is similar to divide and conquer, except instead of
partitioning a problem into multiple subproblems of smaller
size, we use some technique to reduce our problem into a
single problem that is smaller than the original.

Some authors consider that the name “Divide-and-Conquer”
should be used only when each problem may generate two or
more subproblems. The name Decrease-and-Conquer has been
proposed instead for the single-subproblem class. In the old
literature, both of them are referred to as
“Divide-and-Conquer”.

3 / 27 Decrease and Conquer



Principal of Decrease-and-Conquer (2)

This approach is based on exploiting the relationship between a
solution to a given instance of a problem and a solution to its
smaller instance.

Implementation:

Top-down approach: It always leads to the recursive
implementation of the problem.

Bottom-up approach: It is usually implemented in iterative
way, starting with a solution to the smallest instance of the
problem.

4 / 27 Decrease and Conquer



Principal of Decrease-and-Conquer (2)

Powering algorithm

Approach 1.

X n =

{
1 for n = 0

X n−1 · X for n > 0

Approach 2.
X n = X · X · X · · · · · X︸ ︷︷ ︸

n times

Which approach is Top-down/Bottom-up?

5 / 27 Decrease and Conquer



of Decrease-and-Conquer

Three major variations of decrease-and-conquer

1 Decrease by a constant: the size of an instance is reduced by
the same constant on each iteration of the algorithm.
Typically, this constant is equal to one.

2 Decrease by a constant factor: reducing a problem instance by
the same constant factor on each iteration of the algorithm.
In most applications, this constant factor is equal to two.

3 Decrease by a variable size: the size-reduction pattern varies
from one iteration of an algorithm to another.

6 / 27 Decrease and Conquer



1. Decrease by a constant (1)

Figure: Decrease-(by one)-and-conquer technique.

7 / 27 Decrease and Conquer



1. Decrease by a constant (2)

Example: Powering: X n

X n =

{
1 for n = 0

X n−1 · X for n > 0

Here, X n is computed by first decreasing the exponent by 1 (i.e.
computing X n−1).

8 / 27 Decrease and Conquer



1. Decrease by a constant (3)

Other examples:

Selection sort
This is a hard split/easy join algorithm by splitting the array
into two sub-arrays: the first sub-array contains only one
element, and the other sub-array contains n − 1 elements.

Insertion sort
This is an easy split/hard join algorithm by splitting the array
into two sub-arrays: the first sub-array contains only one
element, and the other sub-array contains n − 1 elements.

9 / 27 Decrease and Conquer



2. Decrease by a constant factor (1)

Figure: Decrease-(by half)-and-conquer technique.

10 / 27 Decrease and Conquer



2. Decrease by a constant factor (2)

Example 1: Powering: X n

X n =

{
1 for n = 0

X n/2 · X n/2 for n > 0

Here, X n is computed by first decreasing the exponent by a half
(i.e. computing X n/2).

11 / 27 Decrease and Conquer



2. Decrease by a constant factor (3)

Example 2: Binary search (already discussed in Week 05)

Given an array A sorted (in ascending order), and a value X . We
want to check if X is contained in A, and find the position of X
in A.

mid

left-half right-half

i j

If mid 6= X , then we binary-search X only in the left-half or
the right-half.

So the instance size decreases by half.

12 / 27 Decrease and Conquer



2. Decrease by a constant factor (4)

Example 3: Fake-Coin Problem

Problem

Among n identical-looking coins, one is fake. With a balance scale,
we can compare any two sets of coins. That is, by tipping to the
left, to the right, or staying even, the balance scale will tell
whether the sets weigh the same or which of the sets is heavier
than the other but not by how much.

Task: Design an efficient algorithm for detecting the fake coin.

An easier version of the problem: assume that the fake coin is
known to be lighter than the genuine one

13 / 27 Decrease and Conquer



2. Decrease by a constant factor (5)

Strategy:

1 Divide n coins into two piles of bn/2c coins each.

2 If the piles weigh the same, the coin put aside must be fake.

3 Otherwise, we can proceed in the same manner with the
lighter pile, which must be the one with the fake coin.

Time complexity:

W (n): the number of weighings needed by this algorithm in the
worst case.

W (n) =

{
0 for n = 1

W (bn/2c) + 1 for n > 1

W (n) = O(log n).

14 / 27 Decrease and Conquer



3. Decrease by a variable size (1)

The size-reduction pattern varies from one iteration of an
algorithm to another.

Example: Euclids algorithm for computing the greatest common
divisor. The algorithm is based on the property:

gcd(m, n) = gcd(n, m mod n)

Though the value of the second argument is always smaller on the
right-hand side than on the left-hand side, it decreases neither by a
constant nor by a constant factor.

15 / 27 Decrease and Conquer



3. Decrease by a variable size (2): Interpolation search

Interpolation search

Problem: Given an array A sorted in ascending way, and a search key v .
Check if v is in A, and find the position of v in A.

Interpolation search takes into account the value of the search key in
order to find the arrays element to be compared with the search key.

The algorithm mimics the way we search for a name in a telephone
book.

If we are searching for someone named “Brown”, we open the
book not in the middle but very close to the beginning, unlike
our action when searching for someone named, say, “Smith”.

The algorithm assumes that the array values increase linearly, i.e.,
along the straight line through the points (`,A[`]) and (r ,A[r ]).
(The accuracy of this assumption can influence the algorithms
efficiency but not its correctness.)

16 / 27 Decrease and Conquer



Interpolation search (cont.)

`: the start index of A

r: the end index of A

v: the search key

x: the index of v

v−A[`]
A[r]−A[`] =

x−`
r−`

x = ` + r − ` · v−A[`]
A[r]−A[`]

We do not use the constant 1
2 as in Binary Search, but another

more accurate constant “c”, that can lead us closer to the
searched item.

17 / 27 Decrease and Conquer



Interpolation search (cont.)

Recall the Binary Search algorithm

Algorithm 1 Binary search algorithm
1: procedure BinSearch(A, i , j ,KEY )
2: if i > j then
3: return −1 . Base case is reached but KEY is not found

4: end if
5: m = b i+j

2
c . Choose the pivot

6: if KEY = A[m] then
7: return m . KEY is found at index m

8: else
9: if KEY < A[m] then . The KEY is located on the Left sub-array

10: return BinSearch(A, i ,m − 1,KEY ) . Rec-call left part

11: else
12: return BinSearch(A,m + 1, j ,KEY ) . Rec-call right part

13: end if
14: end if

15: end procedure

18 / 27 Decrease and Conquer



Interpolation search (cont.)

The Interpolation Search algorithm is similar to Binary Search, by
replacing

mid← (i + j) div 2

with

mid← i + (j − i) ∗
(

v − A[i ]

A[j ]− A[i ]

)

(In the previous figure, i = `, j = r)

19 / 27 Decrease and Conquer



Interpolation search (cont.)

Algorithm 2 Interpolation search algorithm
1: procedure InterpSearch(A, i , j , v)
2: if i > j then
3: return −1 . Base case is reached but v is not found

4: end if
5: m = bi + (j − i) ∗ v−A[i ]

A[j]−A[i ]
c . Choose the pivot

6: if v = A[m] then
7: return m . v is found at index m

8: else
9: if v < A[m] then . v is located on the left sub-array

10: return InterpSearch(A, i ,m − 1, v) . Rec-call left part

11: else
12: return InterpSearch(A,m + 1, j , v) . Rec-call right part

13: end if
14: end if

15: end procedure

20 / 27 Decrease and Conquer



Interpolation search (cont.)

Time complexity of InterpSearch

Best-case: O(1)

Worst-case: O(n), for any data distribution.

Average-case: O(log log n), if the data in the array is uniformly
distributed.

If n is 1 billion (= 109), log(log(n)) ≈ 5 (computed in base 2), log(n) ≈ 30.

21 / 27 Decrease and Conquer



3. Decrease by a variable size (3): Computing median &
Selection Problem

Selection problem is the problem of finding the kth smallest
element in a list of n numbers. This number is called the kth order
statistic.

If k = 1: finding the smallest element (minimum)

If k = n: finding the largest element (maximum)

If k = dn2e: finding median

Obviously, we can find the kth smallest element in a list by sorting
the list first and then selecting the kth element in the output of a
sorting algorithm.

But, what if we are not allowed to sort the array?

22 / 27 Decrease and Conquer



Computing median & Selection Problem (cont.)

Use similar idea as “Partitioning” used in Quick Sort. But we do
not always partition the search array in the middle.

all are ≤ p all are ≥ pp p

si1 . . . is−1 is+1 . . . in

If s = dn/2e, then the pivot p is the median

if s > dn/2e, then the median is in the left sub-array

if s < dn/2e, then the median is in the right sub-array

23 / 27 Decrease and Conquer



Computing median & Selection Problem (cont.)

Example of implementation of Quickselect

0 1 2 3 4 5 6 7 8

4 1 10 8 7 12 9 2 15

4 1 10 8 7 12 9 2 15

4 1 10 8 7 12 9 2 15

4 1 2 8 7 12 9 10 15

4 1 2 8 7 12 9 10 15

2 1 4 8 7 12 9 10 15

8 7 12 9 10 15

8 7 12 9 10 15

8 7 12 9 10 15

7 8 12 9 10 15

s i

s i

s

s

s

i

i

i

s i

s i

s i

Apply the partition-based 
algorithm to find the median

Here k = ⌈9/2⌉ = 5
So we want to find the 
element in the 5th position

x pivot

24 / 27 Decrease and Conquer



Computing median & Selection Problem (cont.)

Algorithm 3 Lomuto partition

1: procedure Lomuto(A, `, r)
2: input: a sub-array A[`..r ] of array A[0..n − 1]
3: output: partition of A[`..r ] and the new position of the pivot
4: p ← A[`]
5: s ← `
6: for i ← ` + 1 to r do
7: if A[i ] < p then
8: s ← s + 1
9: swap(A[s],A[i ])

10: end if
11: end for
12: swap(A[`],A[s])
13: return s
14: end procedure

25 / 27 Decrease and Conquer



Computing median & Selection Problem (cont.)

Algorithm 4 Quick Selection

1: procedure Quickselect(A, `, r , k)
2: input: a sub-array A[`..r ] of ordorable array A[0..n − 1], and integer

k with 1 ≤ k ≤ r − `+ 1

3: output: the value of the k-th smallest element in A[`..r ]

4: s ← Lomuto(A, `, r)
5: if s = k − 1 then
6: return A[s]
7: else
8: if s > ` + k − 1 then
9: Quickselect(A, `, s − 1, k)

10: else
11: Quickselect(A, s + 1, r , k − 1− s)
12: end if
13: end if
14: end procedure

26 / 27 Decrease and Conquer



Computing median & Selection Problem (cont.)

Time complexity of Quickselect

Best-case

Partitioning array of size n by Lomuto always requires n − 1
key comparisons.

If it produces the split that produces the solution without
recursive call, then:

TCbest(n) = n − 1 ∈ Θ(n)

Worst-case

But, the algorithm can produce an extremely unbalanced partition
of a given array, with one part being empty and the other
containing n − 1 elements.

In this case:

TCworst(n) = (n − 1) + (n − 2) + · · ·+ 1 =
(n − 1)n

2
∈ Θ(n2)

27 / 27 Decrease and Conquer


