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Master Theorem

How to deal with
long computation of time complexity?
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Master Theorem (1)

When analyzing algorithms, recall that we only care about the asymptotic
behavior.

The Master Theorem can be used to

determine the asymptotic notation of time complexity in the form of a

recurrence relation easily without having to solve it iteratively.

Theorem (Master Theorem)

Given the time complexity function: T (n) = aT (n/b) + f (n).
If f (n) ∈ Θ(nd) where d ≥ 0, then:

T (n) ∈


Θ(nd), if a < bd

Θ(nd log n), if a = bd

Θ(nlogb a), if a > bd

Analogous results also hold for the Ω and O notations.
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Master Theorem (2): Example 1

In Merge Sort/Quick Sort,

T (n) =

{
t, for n = 1

2T (n/2) + cn, for n > 1

T (n) = aT (n/b) + cnd

a = 2, b = 2, d = 1

a = bd is satisfied (namely 2 = 21)

So the recurrence relation T (n) = aT (n/b) + cnd satisfies the 2nd
case of the following function.

T (n) ∈


O(nd), if a < bd

O(nd log n), if a = bd

O(nlogb a), if a > bd

So, T (n) ∈ O(n log n).
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Master Theorem (2): Example 2

In Powering algorithm to compute X n,

T (n) ∈

{
1, for n = 0

T (n/2) + 1, for n > 0

T (n) = aT (n/b) + cnd

a = 1, b = 2, d = 0

a = bd is satisfied (namely 1 = 20)

So the recurrence relation T (n) = aT (n/b) + cnd satisfies the 2nd
case of the following function.

T (n) ∈


O(nd), if a < bd

O(nd log n), if a = bd

O(nlogb a), if a > bd

So, T (n) ∈ O(n0 log n) = O(log n).
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Master Theorem (2): Example 3

In divide-and-conquer array-sum-computation algorithm, given the
input size is n = 2k , we have time complexity function:

T (n) = 2T (n/2) + 1

because:

at each step, the problem is divided into 2 sub-problems of
equal size (b = 2), and both of them must be solved (a = 2).

The Divide and Combine complexity function is
f (n) ∈ Θ(1) = Θ(n0)

Hence,

T (n) ∈ Θ
(
nlogb a

)
=
(
nlog2 2

)
= Θ(n)
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Master Theorem (2): Example 4

Let T (n) = 2T (n4 ) +
√
n + 42. What are the parameters?

a = 2; b = 4; d =
1

2

Therefore, which condition?

Since 2 = 4
1
2 , case 2 of Master Thm applies. Hence,

T (n) ∈ Θ(nd log n) = Θ(
√
n log n)
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Master Theorem (3): Importance & proof

Divide-and-Conquer + Master Theorem = ?

The combination of the two gives you the ability to very quickly
iterate between algorithm design and its runtime analysis.

Very pro way of algorithm development!

The proof can be read in this lecture note (pages 3-4):

https://web.stanford.edu/class/archive/cs/cs161/

cs161.1182/Lectures/Lecture3/CS161Lecture03.pdf
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Master Theorem (5): Advantages & drawbacks

Master theorem lets you go from the recurrence to the
asymptotic bound very quickly.

It typically works well for divide-and-conquer algorithms.

But Master theorem does not apply to all recurrences.

T (n) is not monotone, ex: T (n) = sin n
f (n) is not a polynomial, ex: T (n) = 2T ( n

2 ) + 2n

b cannot be expressed as a constant, ex: T (n) = T (
√
n)

When it does not apply, you can:

do some upper/lower bounding and get a potentially looser
bound
use the substitution method
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Matrix multiplication
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Square matrix multiplication (1)

Problem

Given two square matrices A and B. Compute A× B

Let A = [aij ], B = [bij ] be n × n matrices, and C = A× B.

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =
n∑

k=1

aikbkj

=×

A B C
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Square matrix multiplication (2)

Brute-force approach: compute each element of C one-by-one by
multiplying the corresponding row of A and column of B.

Algorithm 1 Square matrix multiplication (brute force)

1: procedure MatrixMult(A,B)
2: for i ← 1 to n do
3: for j ← 1 to n do
4: C [i , j ]← 0
5: for k ← 1 to n do
6: C [i , j ]← C [i , j ] + A[i , k] ∗ B[k, j ]
7: end for
8: end for
9: end for
10: return C
11: end procedure

Time complexity: O(n3)
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Square matrix multiplication (3)

Matrices A and B are each split into four submatrices of size n
2 ×

n
2 .

A

×

B C

=
A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

Hence the component of matrix C can be computed as follows:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B22 + A22 · B22
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Square matrix multiplication (3)

Example

A square matrix can be split as follows:

11 3 3110

31

92

52

23

2

3

17

1 21 15 7

A22 =

A12 =

A21 =

11 3

1 21
A11 =

31

92

52

23

2

3

17

3110

15 7

A =
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Square matrix multiplication (3): Pseudocode

Algorithm 2 Matrix multiplication

1: procedure Mmul(A,B: matrices, n: integer)
2: if n = 1 then . The matrices are of size 1 × 1

3: return A ∗ B . Scalar multiplication

4: else
5: Split(A)
6: Split(B)
7: C11 ← Msum(Mmul(A11,B11,

n
2 ), Mmul(A12,B21,

n
2 ))

8: C12 ← Msum(Mmul(A11,B12,
n
2 ), Mmul(A12,B22,

n
2 ))

9: C21 ← Msum(Mmul(A21,B11,
n
2 ), Mmul(A22,B21,

n
2 ))

10: C22 ← Msum(Mmul(A21,B12,
n
2 ), Mmul(A22,B22,

n
2 ))

11: end if
12: return C . C is the union of C11, C12, C21, C22

13: end procedure
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Square matrix multiplication (3): Pseudocode

The procedure Msum used in Mmul is as follows.

Algorithm 3 Sum of two matrices

1: procedure Msum(A,B: matrices, n: integer)
2: for i ← 1 to n do
3: for j ← 1 to n do
4: C [i , j ]← A[i , j ] + B[i , j ]
5: end for
6: end for
7: end procedure

Time complexity: O(n2)
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Square matrix multiplication (3): Time complexity

The recursive formula for TC is given by:

T (n) =

{
a, n = 1

8T (n/2) + cn2, n > 1

By Master Thm:

T (n) = aT
(n
b

)
+ cnd

where a = 8, b = 2, d = 2.

The relation a > bd (namely 8 > 22) is satisfied.

So T (n) satisfies 3rd case of Master Thm. Hence:

T (n) = O(nlog2 8) = O(n3)

This gives TC with same order of magnitude as brute force. So the

algorithm is not so powerful. Can we do better?

18 / 38 Divide and Conquer



Strassen Matrix multiplication

Figure: Volker Strassen (born in 1936, German mathematician)
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Strassen matrix multiplication (1)

Volker Strassen’s idea is to reduce the number of ’multiplications’ in
the procedure. Since the ’multiplication’ cost is more ’expensive’
than the ’addition’ (see https://www.wikiwand.com/en/

Computational_complexity_of_mathematical_operations).

The following operations consist of 8 multiplications and 4
additions:

C11 = A11 · B11 + A12 · B21

C12 = A11 · B12 + A12 · B22

C21 = A21 · B11 + A22 · B21

C22 = A21 · B22 + A22 · B22

Strassen modifies the above equations to reduce it to 7
multiplications but with more additions
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Strassen matrix multiplication (2)

The modification is as follows:

M1 = (A11 − A22)(B21 + B22)

M2 = (A11 + A22)(B11 + B22)

M3 = (A11 − A21)(B11 + B12)

M4 = (A11 + A12)B22

M5 = A11(B12 − B22)

M6 = A22(B21 − B11)

M7 = (A21 + A22)B11

Hence:

C11 = M1 + M2 −M4 + M6

C12 = M4 + M5

C21 = M6 + M7

C22 = M2 −M3 + M5 −M7

This operation consists of 7 multiplications and 18 additions.
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Algorithm 4 Matrix multiplication

1: procedure Strassen(A,B: matrices, n: integer)
2: if n = 1 then return A ∗ B . Scalar multiplication

3: else
4: Split(A)
5: Split(B)
6: M1 ← Strassen(A12 − A22,B21 + B22,

n
2 )

7: M2 ← Strassen(A11 + A22,B11 + B22,
n
2 )

8: M3 ← Strassen(A11 − A21,B11 + B12,
n
2 )

9: M4 ← Strassen(A11 + A12,B22,
n
2 )

10: M5 ← Strassen(A11,B12 − B22,
n
2 )

11: M6 ← Strassen(A22,B21 − B11,
n
2 )

12: M7 ← Strassen(A21 + A22,B11,
n
2 )

13: C11 ← M1 + M2 −M4 + M6

14: C12 ← M4 + M5

15: C21 ← M6 + M7

16: C22 ← M2 −M3 + M5 −M7

17: end if
18: return C . C is the union of C11, C12, C21, C22

19: end procedure
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Strassen matrix multiplication (3)

The recursive formula for TC is given by:

T (n) =

{
a, n = 1

7T (n/2) + cn2, n > 1

By Master Thm, T (n) = aT
(
n
b

)
+ cnd , where a = 7, b = 2,

d = 2.

The relation a > bd (namely 7 > 22) is satisfied.

So T (n) satisfies 3rd case of Master Thm. Hence:

T (n) = O(n log2 7) = O(n2.81)

This gives a better TC than the previous divide-and-conquer
algorithm.
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Large number multiplication
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Large number multiplication (1): definition

A large number is a number that contains n digits or n bits.

Example: 564389018149014329871520,
1000011011010100100110010101, ...

Issues with large numbers

Programming languages have limitation in representing large
numbers

In C, number types are char (8 bit), int (6 bit), and long

(32 bit)

For the numbers that are greater than 32 bits, we have to
define new type and define the primitive arithmetic operations
(+,−, ∗, /, etc.)
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Large number multiplication (2): problem statement

We will discuss how an algorithm can perform multiplication with
large numbers

Example: 1765420875208345186× 754711199736308361736432

Problem

Given two integers X and Y of n digits (or n bits):

X = x1x2x3 . . . xn

Y = y1y2y3 . . . yn

Compute X × Y
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Large number multiplication (3): classical multiplication

Example

X = 1234 (n = 4)

Y = 5678 (n = 4)

Classical way to perform X × Y :
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Large number multiplication (3): pseudocode

Algorithm 5 Large number multiplication (brute force)

1: procedure Mult(X ,Y : long integer, n: integer)
2: declaration
3: temp, unit, tens: integer
4: end declaration

5: for every digit yi of yn, yn−1, . . . , y1 do
6: tens ← 0
7: for every digit xj of xn, xn−1, . . . , x1 do
8: temp ← xj ∗ yi
9: temp ← temp + tens

10: unit ← temp mod 10
11: tens ← temp div 10
12: print(unit)
13: end for
14: end for
15: Z ← add all results of the multiplication from top to bottom
16: return Z

17: end procedure
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Large number multiplication (4): DnC approach

c

a

d

bX

Y

n

n/2 n/2

a = X div 10n/2

c = Y div 10n/2

b = X mod 10n/2

d = Y mod 10n/2

X and Y can be represented as a, b, c , and d :

X = a · 10n/2 + b and Y = c · 10n/2 + d

The multiplication of X and Y is represented as:

X · Y = (a · 10n/2 + b) · (c · 10n/2 + d)

= ac · 10n + ad · 10n/2 + bc · 10n/2 + bd

= ac · 10n + (ad + bc) · 10n/2 + bd
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Large number multiplication (5): DnC approach

Example

Let n = 6, X = 346769 and Y = 279431. Then:

X = 346769→ a = 346, b = 769→ X = 346 · 103 + 769

Y = 279431→ c = 279, d = 431→ Y = 279 · 103 + 431

The multiplication of X and Y can be written as:

X · Y = (346 · 103 + 769) · (279 · 103 + 431)

= (346)(279) · 106 + ((346)(431) + (769)(279)) · 103 + (769)(431)

This operation involves four large numbers multiplication.
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Large number multiplication (6): DnC pseudocode

Algorithm 6 Large number multiplication (DnC)

1: procedure Mult2(X ,Y : long integer, n: integer)
2: declaration
3: a, b, c, d : Long integer, s: integer
4: end declaration

5: if n = 1 then
6: return X ∗ Y . scalar multiplication

7: else
8: s ← n div 2
9: a← X div 10s

10: b ← X mod 10s

11: c ← Y div 10s

12: d ← Y mod 10s

13: return Mult2(a, c, s)*102s + Mult2(b, c, s)*10s + Mult2(a, d, s)*10s + Mult2(b, d, s)

14: end if

15: end procedure
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Large number multiplication (6): time complexity

Time complexity of Mult2

T (n) =

{
a for n = 1

4T (n/2) + cn for n > 1

Remark. Computing 10s and 102s in the algorithm can be done by
adding s or 2s zeros.

By Master Thm, we obtain (prove it!):

T (n) = O(n2)

This algorithm has the same complexity (asymptotically) as the
brute force algorithm. Can we do better?

32 / 38 Divide and Conquer



Karatsuba multiplication

Figure: Anatoly Alexeyevich Karatsuba (1937-2008, Russian
mathematician)
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Karatsuba multiplication (1): definition

Improvement of the previous multiplication algorithm

The idea is similar to the Strassen matrix multiplication, by
reducing the number of multiplication.

The previous algorithm gives:

X · Y = ac · 10n + (ad + bc) · 10n/2 + bd

Karatsuba manipulates the above equation such that it needs only
3 multiplications, but consequently, it needs more addition.
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Karatsuba multiplication (2): algorithm

Let
r = (a + b)(c + d) = ac + (ad + bc) + bd

Then

(ad + bc) = r − ac − bd = (a + b)(c + d)− ac − bd

So, the multiplication X · Y can be written as:

X · Y = ac · 10n + (ad + bc) · 10n/2 + bd

= ac︸︷︷︸
p

·10n + ((a + b)(c + d)︸ ︷︷ ︸
r

− ac︸︷︷︸
p

− bd︸︷︷︸
q

) · 10n/2 + bd︸︷︷︸
q

Now the algorithm only contains 3 multiplications, to compute p,
q, and r .
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Karatsuba multiplication (3): pseudocode

Algorithm 7 Karatsuba multiplication
1: procedure Mult3(X ,Y : long integer, n: integer)
2: declaration
3: a, b, c, d , p, q, r : Long integer, s: integer
4: end declaration

5: if n = 1 then
6: return X ∗ Y . scalar multiplication

7: else
8: s ← n div 2
9: a← X div 10s

10: b ← X mod 10s

11: c ← Y div 10s

12: d ← Y mod 10s

13: p ← Mult3(a, c, s)
14: q ← Mult3(b, d , s)
15: r ← Mult3(a+ b, c + d , s)
16: return p ∗ 102s + (r − p − q) ∗ 10s + q
17: end if

18: end procedure
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Karatsuba multiplication (3): time complexity

Time complexity of Mult3

T (n): three multiplications of integers of n/2 digits + addition of
integers of n/2 digits

T (n) =

{
a for n = 1

3T (n/2) + cn for n > 1

From T (n) = 3T (n/2) + cn, we have a = 3, b = 2, d = 1, and
a > bd (namely 3 > 21).

So the recurrence formula satisfies the 3rd case of Master Thm
(namely a > bd). So:

T (n) = O(nlog2 3) = O(n1.59)

This is better than Mult2 (which is O(n2)).
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Summary

Advantages of DnC method

Solving difficult problems: It is a powerful method for solving
difficult problems. Dividing the problem into subproblems so that
subproblems can be combined again is a major difficulty in designing
a new algorithm. For many such problem this algorithm provides a
simple solution.

Parallelism: Since it allows us to solve the subproblems
independently, this allows for execution in multi-processor machines,
especially shared-memory systems where the communication of data
between processors does not need to be planned in advance, because
different subproblems can be executed on different processors.

Drawbacks of DnC method

Recursion is slow: This is because of the overlap of the repeated
subproblem calls. Also the algorithm need stack for storing the calls.
(But actually this depends upon the implementation style.)
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