06 - Divide and Conquer (part 2)

[KOMS119602] \& [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari
Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 March 2022

- Master Theorem
- Matrix multiplication
- Strassen matrix multiplication
- Large number multiplication
- Karatsuba multiplication

Master Theorem

How to deal with long computation of time complexity?

Master Theorem (1)

When analyzing algorithms, recall that we only care about the asymptotic behavior.

The Master Theorem can be used to determine the asymptotic notation of time complexity in the form of a recurrence relation easily without having to solve it iteratively.

Theorem (Master Theorem)

Given the time complexity function: $T(n)=a T(n / b)+f(n)$. If $f(n) \in \Theta\left(n^{d}\right)$ where $d \geq 0$, then:

$$
T(n) \in \begin{cases}\Theta\left(n^{d}\right), & \text { if } a<b^{d} \\ \Theta\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ \Theta\left(n^{\log _{b} a}\right), & \text { if } a>b^{d}\end{cases}
$$

Analogous results also hold for the Ω and \mathcal{O} notations.

In Merge Sort/Quick Sort,

$$
T(n)= \begin{cases}t, & \text { for } n=1 \\ 2 T(n / 2)+c n, & \text { for } n>1\end{cases}
$$

- $T(n)=a T(n / b)+c n^{d}$
- $a=2, b=2, d=1$
- $a=b^{d}$ is satisfied (namely $2=2^{1}$)

So the recurrence relation $T(n)=a T(n / b)+c n^{d}$ satisfies the $2 n d$ case of the following function.

$$
T(n) \in \begin{cases}\mathcal{O}\left(n^{d}\right), & \text { if } a<b^{d} \\ \mathcal{O}\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ \mathcal{O}\left(n^{\log _{b} a}\right), & \text { if } a>b^{d}\end{cases}
$$

So, $T(n) \in \mathcal{O}(n \log n)$.

In Powering algorithm to compute X^{n},

$$
T(n) \in \begin{cases}1, & \text { for } n=0 \\ T(n / 2)+1, & \text { for } n>0\end{cases}
$$

- $T(n)=a T(n / b)+c n^{d}$
- $a=1, b=2, d=0$
- $a=b^{d}$ is satisfied (namely $1=2^{0}$)

So the recurrence relation $T(n)=a T(n / b)+c n^{d}$ satisfies the $2 n d$ case of the following function.

$$
T(n) \in \begin{cases}\mathcal{O}\left(n^{d}\right), & \text { if } a<b^{d} \\ \mathcal{O}\left(n^{d} \log n\right), & \text { if } a=b^{d} \\ \mathcal{O}\left(n^{\log _{b} a}\right), & \text { if } a>b^{d}\end{cases}
$$

So, $T(n) \in \mathcal{O}\left(n^{0} \log n\right)=\mathcal{O}(\log n)$.

Master Theorem (2): Example 3

In divide-and-conquer array-sum-computation algorithm, given the input size is $n=2^{k}$, we have time complexity function:

$$
T(n)=2 T(n / 2)+1
$$

because:

- at each step, the problem is divided into 2 sub-problems of equal size $(b=2)$, and both of them must be solved $(a=2)$.
- The Divide and Combine complexity function is $f(n) \in \Theta(1)=\Theta\left(n^{0}\right)$
Hence,

$$
T(n) \in \Theta\left(n^{\log _{b} a}\right)=\left(n^{\log _{2} 2}\right)=\Theta(n)
$$

Master Theorem (2): Example 4

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

Master Theorem (2): Example 4

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
a=2 ; b=4 ; d=\frac{1}{2}
$$

Therefore, which condition?

Master Theorem (2): Example 4

Let $T(n)=2 T\left(\frac{n}{4}\right)+\sqrt{n}+42$. What are the parameters?

$$
a=2 ; b=4 ; d=\frac{1}{2}
$$

Therefore, which condition?
Since $2=4^{\frac{1}{2}}$, case 2 of Master Thm applies. Hence,

$$
T(n) \in \Theta\left(n^{d} \log n\right)=\Theta(\sqrt{n} \log n)
$$

Master Theorem (3): Importance \& proof

Divide-and-Conquer + Master Theorem = ?

Master Theorem (3): Importance \& proof

Divide-and-Conquer + Master Theorem $=$?

The combination of the two gives you the ability to very quickly iterate between algorithm design and its runtime analysis.

Very pro way of algorithm development!

Master Theorem (3): Importance \& proof

Divide-and-Conquer + Master Theorem $=$?

The combination of the two gives you the ability to very quickly iterate between algorithm design and its runtime analysis.

Very pro way of algorithm development!
The proof can be read in this lecture note (pages 3-4):
https://web.stanford.edu/class/archive/cs/cs161/ cs161.1182/Lectures/Lecture3/CS161Lecture03.pdf

Master Theorem (5): Advantages \& drawbacks

- Master theorem lets you go from the recurrence to the asymptotic bound very quickly.
- It typically works well for divide-and-conquer algorithms.
- But Master theorem does not apply to all recurrences.
- $T(n)$ is not monotone, ex: $T(n)=\sin n$
- $f(n)$ is not a polynomial, ex: $T(n)=2 T\left(\frac{n}{2}\right)+2^{n}$
- b cannot be expressed as a constant, ex: $T(n)=T(\sqrt{n})$
- When it does not apply, you can:
- do some upper/lower bounding and get a potentially looser bound
- use the substitution method

Matrix multiplication

Square matrix multiplication (1)

Problem

Given two square matrices A and B. Compute $A \times B$

Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right]$ be $n \times n$ matrices, and $C=A \times B$.

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

C

Square matrix multiplication (2)

Brute-force approach: compute each element of C one-by-one by multiplying the corresponding row of A and column of B.

```
Algorithm 1 Square matrix multiplication (brute force)
    procedure MatrixMult \((A, B)\)
    for \(i \leftarrow 1\) to \(n\) do
        for \(j \leftarrow 1\) to \(n\) do
        \(C[i, j] \leftarrow 0\)
        for \(k \leftarrow 1\) to \(n\) do
                        \(C[i, j] \leftarrow C[i, j]+A[i, k] * B[k, j]\)
                end for
            end for
    end for
10: return \(C\)
11: end procedure
```

Time complexity: $\mathcal{O}\left(n^{3}\right)$

Square matrix multiplication (3)

Matrices A and B are each split into four submatrices of size $\frac{n}{2} \times \frac{n}{2}$.

A

B
C

Hence the component of matrix C can be computed as follows:

- $C_{11}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21}$
- $C_{12}=A_{11} \cdot B_{12}+A_{12} \cdot B_{22}$
- $C_{21}=A_{21} \cdot B_{11}+A_{22} \cdot B_{21}$
- $C_{22}=A_{21} \cdot B_{22}+A_{22} \cdot B_{22}$

Square matrix multiplication (3)

Example

A square matrix can be split as follows:

$$
\begin{aligned}
& A=\left[\begin{array}{cc:cc}
1 & 21 & 15 & 7 \\
11 & 3 & 10 & 31 \\
\hdashline 52 & 31 & 2 & 17 \\
2 & 9 & 23 & 3
\end{array}\right] \\
& A_{11}=\left[\begin{array}{rr}
1 & 21 \\
11 & 3
\end{array}\right] \quad A_{12}=\left[\begin{array}{cc}
15 & 7 \\
10 & 31
\end{array}\right] \\
& A_{21}=\left[\begin{array}{cc}
52 & 31 \\
2 & 9
\end{array}\right] \quad A_{22}=\left[\begin{array}{cc}
2 & 17 \\
23 & 3
\end{array}\right]
\end{aligned}
$$

Square matrix multiplication (3): Pseudocode

```
Algorithm 2 Matrix multiplication
    1: procedure \(\operatorname{Mmul}(A, B\) : matrices, \(n\) : integer)
    2: \(\quad\) if \(n=1\) then
                                    - The matrices are of size \(1 \times 1\)
                                    return \(A * B \quad \triangleright\) scalar multiplication
            else
        \(\operatorname{Split}(A)\)
        \(\operatorname{Split}(B)\)
            \(C_{11} \leftarrow \operatorname{Msum}\left(\operatorname{MmuL}\left(A_{11}, B_{11}, \frac{n}{2}\right), \operatorname{MmuL}\left(A_{12}, B_{21}, \frac{n}{2}\right)\right)\)
            \(C_{12} \leftarrow \operatorname{Msum}\left(\operatorname{MmuL}\left(A_{11}, B_{12}, \frac{n}{2}\right), \operatorname{MmuL}\left(A_{12}, B_{22}, \frac{n}{2}\right)\right)\)
            \(C_{21} \leftarrow \operatorname{Msum}\left(\operatorname{MmuL}\left(A_{21}, B_{11}, \frac{n}{2}\right), \operatorname{MmuL}\left(A_{22}, B_{21}, \frac{n}{2}\right)\right)\)
10:
            \(C_{22} \leftarrow \operatorname{Msum}\left(\operatorname{MmuL}\left(A_{21}, B_{12}, \frac{n}{2}\right), \operatorname{Mmul}\left(A_{22}, B_{22}, \frac{n}{2}\right)\right)\)
        end if
12: return \(C \quad \triangleright C\) is the union of \(C_{11}, C_{12}, C_{21}, C_{22}\)
13: end procedure
```


Square matrix multiplication (3): Pseudocode

The procedure Msum used in Mmul is as follows.

Algorithm 3 Sum of two matrices
1: procedure $\operatorname{Msum}(A, B$: matrices, n : integer)
2: \quad for $i \leftarrow 1$ to n do
3: \quad for $j \leftarrow 1$ to n do
4: $\quad C[i, j] \leftarrow A[i, j]+B[i, j]$
5: end for
6: end for
7: end procedure

Time complexity: $\mathcal{O}\left(n^{2}\right)$

Square matrix multiplication (3): Time complexity

The recursive formula for TC is given by:

$$
T(n)= \begin{cases}a, & n=1 \\ 8 T(n / 2)+c n^{2}, & n>1\end{cases}
$$

- By Master Thm:

$$
T(n)=a T\left(\frac{n}{b}\right)+c n^{d}
$$

where $a=8, b=2, d=2$.

- The relation $a>b^{d}$ (namely $8>2^{2}$) is satisfied.
- So $T(n)$ satisfies 3rd case of Master Thm. Hence:

$$
T(n)=\mathcal{O}\left(n^{\log _{2} 8}\right)=\mathcal{O}\left(n^{3}\right)
$$

This gives TC with same order of magnitude as brute force. So the algorithm is not so powerful. Can we do better?

Strassen Matrix multiplication

Figure: Volker Strassen (born in 1936, German mathematician)

Strassen matrix multiplication (1)

- Volker Strassen's idea is to reduce the number of 'multiplications' in the procedure. Since the 'multiplication' cost is more 'expensive' than the 'addition' (see https://www.wikiwand.com/en/ Computational_complexity_of_mathematical_operations).
- The following operations consist of 8 multiplications and 4 additions:
- $C_{11}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21}$
- $C_{12}=A_{11} \cdot B_{12}+A_{12} \cdot B_{22}$
- $C_{21}=A_{21} \cdot B_{11}+A_{22} \cdot B_{21}$
- $C_{22}=A_{21} \cdot B_{22}+A_{22} \cdot B_{22}$
- Strassen modifies the above equations to reduce it to 7 multiplications but with more additions

Strassen matrix multiplication (2)

The modification is as follows:

- $M_{1}=\left(A_{11}-A_{22}\right)\left(B_{21}+B_{22}\right)$
- $M_{2}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right)$
- $M_{3}=\left(A_{11}-A_{21}\right)\left(B_{11}+B_{12}\right)$
- $M_{4}=\left(A_{11}+A_{12}\right) B_{22}$
- $M_{5}=A_{11}\left(B_{12}-B_{22}\right)$
- $M_{6}=A_{22}\left(B_{21}-B_{11}\right)$
- $M_{7}=\left(A_{21}+A_{22}\right) B_{11}$

Hence:

- $C_{11}=M_{1}+M_{2}-M_{4}+M_{6}$
- $C_{12}=M_{4}+M_{5}$
- $C_{21}=M_{6}+M_{7}$
- $C_{22}=M_{2}-M_{3}+M_{5}-M_{7}$

This operation consists of 7 multiplications and 18 additions.

1: procedure $\operatorname{Strassen}(A, B$: matrices, n : integer $)$

```
2: if \(n=1\) then return \(A * B\)

3: else
4: \(\quad \operatorname{Split}(A)\)
5: \(\quad \operatorname{Split}(B)\)
6: \(\quad M_{1} \leftarrow \operatorname{Strassen}\left(A_{12}-A_{22}, B_{21}+B_{22}, \frac{n}{2}\right)\)
7:
8: \(\quad M_{3} \leftarrow \operatorname{StRASSEN}\left(A_{11}-A_{21}, B_{11}+B_{12}, \frac{n}{2}\right)\)
9: \(\quad M_{4} \leftarrow \operatorname{STRASSEN}\left(A_{11}+A_{12}, B_{22}, \frac{n}{2}\right)\)
10: \(\quad M_{5} \leftarrow \operatorname{Strassen}\left(A_{11}, B_{12}-B_{22}, \frac{n}{2}\right)\)
11:
12:
\(M_{6} \leftarrow \operatorname{Strassen}\left(A_{22}, B_{21}-B_{11}, \frac{n}{2}\right)\)
\(M_{7} \leftarrow \operatorname{Strassen}\left(A_{21}+A_{22}, B_{11}, \frac{n}{2}\right)\)
13: \(\quad C_{11} \leftarrow M_{1}+M_{2}-M_{4}+M_{6}\)
14: \(\quad C_{12} \leftarrow M_{4}+M_{5}\)
15: \(\quad C_{21} \leftarrow M_{6}+M_{7}\)
16:
17: end if
18: return \(C \quad \triangleright C\) is the union of \(C_{11}, C_{12}, C_{21}, C_{22}\)
19: end procedure

\section*{Strassen matrix multiplication (3)}

The recursive formula for TC is given by:
\[
T(n)= \begin{cases}a, & n=1 \\ 7 T(n / 2)+c n^{2}, & n>1\end{cases}
\]
- By Master Thm, \(T(n)=a T\left(\frac{n}{b}\right)+c n^{d}\), where \(a=7, b=2\), \(d=2\).
- The relation \(a>b^{d}\) (namely \(7>2^{2}\) ) is satisfied.
- So \(T(n)\) satisfies 3rd case of Master Thm. Hence:
\[
T(n)=\mathcal{O}\left(n \log _{2} 7\right)=\mathcal{O}\left(n^{2.81}\right)
\]

This gives a better TC than the previous divide-and-conquer algorithm.

\section*{Large number multiplication}

\section*{Large number multiplication (1): definition}

A large number is a number that contains \(n\) digits or \(n\) bits.
Example: 564389018149014329871520, 1000011011010100100110010101, ...

Issues with large numbers
- Programming languages have limitation in representing large numbers
- In C, number types are char (8 bit), int (6 bit), and long (32 bit)
- For the numbers that are greater than 32 bits, we have to define new type and define the primitive arithmetic operations ( \(+,-, *, /\), etc.)

\section*{Large number multiplication (2): problem statement}

We will discuss how an algorithm can perform multiplication with large numbers

Example: \(1765420875208345186 \times 754711199736308361736432\)

\section*{Problem}

Given two integers \(X\) and \(Y\) of \(n\) digits (or \(n\) bits):
\[
\begin{aligned}
& X=x_{1} x_{2} x_{3} \ldots x_{n} \\
& Y=y_{1} y_{2} y_{3} \ldots y_{n}
\end{aligned}
\]

Compute \(X \times Y\)

\section*{Large number multiplication (3): classical multiplication}

\section*{Example}
\[
\begin{array}{ll}
X=1234 & (n=4) \\
Y=5678 & (n=4)
\end{array}
\]

Classical way to perform \(X \times Y\) :
\[
\begin{array}{r}
X \times Y=1234 \\
\underline{5678 \times} 9 \\
9872 \\
7404 \\
\frac{6170}{7006652}+
\end{array}
\]

\section*{Large number multiplication (3): pseudocode}
```

Algorithm 5 Large number multiplication (brute force)
1: procedure $\operatorname{Mult}(X, Y$: long integer, n : integer)
declaration
temp, unit, tens: integer
end declaration
for every digit y_{i} of $y_{n}, y_{n-1}, \ldots, y_{1}$ do
tens $\leftarrow 0$
for every digit x_{j} of $x_{n}, x_{n-1}, \ldots, x_{1}$ do
temp $\leftarrow x_{j} * y_{i}$
temp \leftarrow temp + tens
unit \leftarrow temp $\bmod 10$
tens \leftarrow temp div 10
print(unit)
end for
end for
$Z \leftarrow$ add all results of the multiplication from top to bottom
return Z
17: end procedure

```

\section*{Large number multiplication (4): DnC approach}

\(X\) and \(Y\) can be represented as \(a, b, c\), and \(d\) :
\[
X=a \cdot 10^{n / 2}+b \quad \text { and } \quad Y=c \cdot 10^{n / 2}+d
\]

The multiplication of \(X\) and \(Y\) is represented as:
\[
\begin{aligned}
X \cdot Y & =\left(a \cdot 10^{n / 2}+b\right) \cdot\left(c \cdot 10^{n / 2}+d\right) \\
& =a c \cdot 10^{n}+a d \cdot 10^{n / 2}+b c \cdot 10^{n / 2}+b d \\
& =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\end{aligned}
\]

\section*{Large number multiplication (5): DnC approach}

\section*{Example}

Let \(n=6, X=346769\) and \(Y=279431\). Then:
\[
\begin{aligned}
& X=346769 \rightarrow a=346, b=769 \rightarrow X=346 \cdot 10^{3}+769 \\
& Y=279431 \rightarrow c=279, d=431 \rightarrow Y=279 \cdot 10^{3}+431
\end{aligned}
\]

The multiplication of \(X\) and \(Y\) can be written as:
\[
\begin{aligned}
X \cdot Y & =\left(346 \cdot 10^{3}+769\right) \cdot\left(279 \cdot 10^{3}+431\right) \\
& =(346)(279) \cdot 10^{6}+((346)(431)+(769)(279)) \cdot 10^{3}+(769)(431)
\end{aligned}
\]

This operation involves four large numbers multiplication.

\section*{Large number multiplication (6): DnC pseudocode}
```

Algorithm 6 Large number multiplication (DnC)
1: procedure $\operatorname{Mult} 2(X, Y$: long integer, n : integer)
2: declaration
a, b, c, d : Long integer, s : integer
end declaration
if $n=1$ then
return $X * Y \quad \triangleright$ scalar multiplication
else
$s \leftarrow n \operatorname{div} 2$
$a \leftarrow X \operatorname{div} 10^{s}$
$b \leftarrow X \bmod 10^{s}$
$c \leftarrow Y \operatorname{div} 10^{s}$
$d \leftarrow Y \bmod 10^{s}$
return $\operatorname{Mult} 2(a, c, s)^{*} 10^{2 s}+\operatorname{Mult} 2(b, c, s)^{*} 10^{s}+\operatorname{Mult} 2(a, d, s)^{*} 10^{s}+\operatorname{Mult} 2(b, d, s)$
end if
15: end procedure

```

\section*{Large number multiplication (6): time complexity}

Time complexity of MULT2
\[
T(n)= \begin{cases}a & \text { for } n=1 \\ 4 T(n / 2)+c n & \text { for } n>1\end{cases}
\]

Remark. Computing \(10^{s}\) and \(10^{2 s}\) in the algorithm can be done by adding \(s\) or \(2 s\) zeros.

By Master Thm, we obtain (prove it!):
\[
T(n)=\mathcal{O}\left(n^{2}\right)
\]

This algorithm has the same complexity (asymptotically) as the brute force algorithm. Can we do better?

\section*{Karatsuba multiplication}


Figure: Anatoly Alexeyevich Karatsuba (1937-2008, Russian mathematician)

\section*{Karatsuba multiplication (1): definition}

Improvement of the previous multiplication algorithm
The idea is similar to the Strassen matrix multiplication, by reducing the number of multiplication.

The previous algorithm gives:
\[
X \cdot Y=a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d
\]

Karatsuba manipulates the above equation such that it needs only 3 multiplications, but consequently, it needs more addition.

\section*{Karatsuba multiplication (2): algorithm}

Let
\[
r=(a+b)(c+d)=a c+(a d+b c)+b d
\]

Then
\[
(a d+b c)=r-a c-b d=(a+b)(c+d)-a c-b d
\]

So, the multiplication \(X \cdot Y\) can be written as:
\[
\begin{aligned}
X \cdot Y & =a c \cdot 10^{n}+(a d+b c) \cdot 10^{n / 2}+b d \\
& =\underbrace{a c}_{p} \cdot 10^{n}+(\underbrace{(a+b)(c+d)}_{r}-\underbrace{a c}_{p}-\underbrace{b d}_{q}) \cdot 10^{n / 2}+\underbrace{b d}_{q}
\end{aligned}
\]

Now the algorithm only contains 3 multiplications, to compute \(p\), \(q\), and \(r\).

\section*{Karatsuba multiplication (3): pseudocode}
```

Algorithm 7 Karatsuba multiplication
1: procedure $\operatorname{Mult} 3(X, Y$: long integer, n : integer)
2: declaration
3: $\quad a, b, c, d, p, q, r$: Long integer, s : integer
4: end declaration
5: if $n=1$ then
return $X * Y \quad \triangleright$ scalar multiplication
else
$s \leftarrow n \operatorname{div} 2$
$a \leftarrow X \operatorname{div} 10^{s}$
$b \leftarrow X \bmod 10^{s}$
$c \leftarrow Y \operatorname{div} 10^{s}$
$d \leftarrow Y \bmod 10^{s}$
$p \leftarrow \operatorname{Mult} 3(a, c, s)$
$q \leftarrow \operatorname{Mult} 3(b, d, s)$
$r \leftarrow \operatorname{Mult} 3(a+b, c+d, s)$
return $p * 10^{2 s}+(r-p-q) * 10^{s}+q$
end if
18: end procedure

```

\section*{Karatsuba multiplication (3): time complexity}

Time complexity of Mult3
\(T(n)\) : three multiplications of integers of \(n / 2\) digits + addition of integers of \(n / 2\) digits
\[
T(n)= \begin{cases}a & \text { for } n=1 \\ 3 T(n / 2)+c n & \text { for } n>1\end{cases}
\]

From \(T(n)=3 T(n / 2)+c n\), we have \(a=3, b=2, d=1\), and \(a>b^{d}\) (namely \(3>2^{1}\) ).

So the recurrence formula satisfies the 3rd case of Master Thm (namely \(a>b^{d}\) ). So:
\[
T(n)=\mathcal{O}\left(n^{\log _{2} 3}\right)=\mathcal{O}\left(n^{1.59}\right)
\]

This is better than Mult2 (which is \(\mathcal{O}\left(n^{2}\right)\) ).

\section*{Advantages of DnC method}
- Solving difficult problems: It is a powerful method for solving difficult problems. Dividing the problem into subproblems so that subproblems can be combined again is a major difficulty in designing a new algorithm. For many such problem this algorithm provides a simple solution.
- Parallelism: Since it allows us to solve the subproblems independently, this allows for execution in multi-processor machines, especially shared-memory systems where the communication of data between processors does not need to be planned in advance, because different subproblems can be executed on different processors.

Drawbacks of DnC method
- Recursion is slow: This is because of the overlap of the repeated subproblem calls. Also the algorithm need stack for storing the calls. (But actually this depends upon the implementation style.)```

