
06 - Divide and Conquer (part 1)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 14-18 March 2022

1 / 55 Divide and Conquer



Table of contents

The principal of divide-and-conquer algorithm

Time complexity analysis of divide-and-conquer

Example of divide-and-conquer algorithms: MinMax problem

Divide-and-conquer based sorting

Merge Sort
Insertion Sort
Quick Sort
Selection Sort

2 / 55 Divide and Conquer



Scheme of divide and conquer
(DnC) algorithm

3 / 55 Divide and Conquer



The principal of divide-and-conquer algorithm

DIVIDE: breaking down the problem into two or more
sub-problems that have the same or similar type, until these
become simple enough to be solved directly. Ideally, the size of the
sub-problems are equal.

CONQUER: solving each of the sub-problems, directly (if the size
is small) or recursively (if the size is still big).

COMBINE: combining the solutions to the sub-problems to
produce a solution to the original problem.

4 / 55 Divide and Conquer



The principal of divide-and-conquer algorithm

In the most typical case of divide-and-conquer, a problem’s
instance of size n is divided into two instances of size n/2.

source: book of Anany Levitin

5 / 55 Divide and Conquer



The principal of divide-and-conquer algorithm

source: https://cdn.kastatic.org/ka-perseus-images/db9d172fc33b90e905c1213b8cce660c228bb99c.png

6 / 55 Divide and Conquer

https://cdn.kastatic.org/ka-perseus-images/db9d172fc33b90e905c1213b8cce660c228bb99c.png


Example of problems solvable by DnC algorithm

1 Merge sort

2 Quick sort

3 Closest pair problem

4 Convex hull problem (haven’t discussed yet)

5 Matrix multiplication

6 Strassen’s algorithm

7 Karatsuba algorithm for fast multiplication

8 Multiplication of two polynomials

7 / 55 Divide and Conquer



Divide and conquer vs Brute force

Study case: sum of array of integers

Problem

Given an array containing n integers a0, a1, . . . , an−1.
Find a0 + a1 + · · ·+ an−1.

Brute-force approach? add the element sequentially (one-by-one)

Divide-and-conquer:

If n = 1, then return a0;

If n > 1, then recursively do the following: divide into two
sub-arrays, then compute the sum of each sub-array.

a0+a1+· · ·+an−1 = (a0+· · ·+abn/2c−1)+(abn/2c+· · ·+an−1)

Which technique is more efficient?

The brute force technique is better in this case.

8 / 55 Divide and Conquer



Divide and conquer vs Brute force

Study case: sum of array of integers

Problem

Given an array containing n integers a0, a1, . . . , an−1.
Find a0 + a1 + · · ·+ an−1.

Brute-force approach? add the element sequentially (one-by-one)

Divide-and-conquer:

If n = 1, then return a0;

If n > 1, then recursively do the following: divide into two
sub-arrays, then compute the sum of each sub-array.

a0+a1+· · ·+an−1 = (a0+· · ·+abn/2c−1)+(abn/2c+· · ·+an−1)

Which technique is more efficient?
The brute force technique is better in this case.

8 / 55 Divide and Conquer



Divide and conquer vs Brute force

DnC is probably the best-known general algorithm design
technique.

Not every divide-and-conquer algorithm is necessarily more
efficient than (even) a brute-force solution.

Often, the time spent on executing the DnC algorithm is
significantly smaller than solving a problem by a different
method.

The DnC approach yields some of the most important and
efficient algorithms in CS.

9 / 55 Divide and Conquer



Divide and conquer scheme

Algorithm 1 General scheme of divide-and-conquer

1: procedure DivideConquer(P: problem, n: integer)
2: if n ≤ n0 then . P is small enough

3: Solve P
4: else
5: Divide to r sub-problems P1, . . . ,Pr of size n1, . . . , nr
6: for each P1, . . . ,Pr do
7: DivideConquer(Pi , ni )
8: end for
9: Combine the solutions of P1, . . . ,Pr to solution of P

10: end if
11: end procedure

10 / 55 Divide and Conquer



DnC analysis of time complexity

11 / 55 Divide and Conquer



Time complexity divide and conquer

T (n) =

{
g(n), n ≤ n0

T (n1) + T (n2) + · · ·+ T (nr ) + f (n), n ≥ n0

T (n): the time complexity of problem P (of size n)

g(n): time complexity for Solve if n is small (i.e. n ≤ n0)

T (n1) + T (n2) + · · ·+ T (nr ): time complexity to proceed
each sub-problem

f (n): time complexity to Divide the problem and Combine
the solution of each sub-problem

12 / 55 Divide and Conquer



Time complexity divide and conquer

An ideal situation is when the Divide operation always produces
two sub-problems of size half of the problem.

1: procedure DivideConquer(P: problem, n: integer)
2: if n ≤ n0 then . P is small enough

3: Solve P
4: else
5: Divide to 2 sub-problems P1,P2 of size n/2
6: DivideConquer(P1, n/2)
7: DivideConquer(P2, n/2)
8: Combine the solutions of P1,P2 to solution of P
9: end if

10: end procedure

13 / 55 Divide and Conquer



Time complexity divide and conquer

If the instance is always divided into two sub-instances at each
step, then:

T (n) =

{
g(n), n ≤ n0

2T (n/2) + f (n), n ≥ n0

More generally, if the instance is always divided into b ≥ 1
instances of equal size, where a ≥ 1 instances need to be solved,
then the complexity is given by:

T (n) = aT (n/b) + f (n)

The order of growth of its solution T (n) depends on the values of
the constants a and b and the order of growth of the function f (n).

14 / 55 Divide and Conquer



MinMax Problem:
An example of DnC algorithm

15 / 55 Divide and Conquer



MinMax problem (1)

Problem

Given an array A of n integers. Find the min and max of the array
simultaneously.

Example:

4 10 11 23 3421 3 142 max = 42
min = 1

Figure: An array of integers, and the min & max of the array

16 / 55 Divide and Conquer



MinMax problem (2)

Algorithm 2 MinMax (brute-force)

1: procedure MinMax1(A[0..n − 1]: array, n: integer)
2: min ← A[0] . Assign the first element as the minimum

3: max ← A[0] . Assign the first element as the maximum

4: for i ← 1 to n − 1 do
5: if A[i ] < min then
6: min ← A[i ]
7: end if
8: if A[i ] > max then max ← A[i ]
9: end if

10: end for
11: end procedure

17 / 55 Divide and Conquer



MinMax problem (3)

The scheme of Minmax with divide-and-conquer

4 10 21 11 23 3 3442 1

4 10 21 11 23 3 3442 1

4 10 21 11

DIVIDE

COMBINE

CONQUER: determine the min & 
max at each partition

min = 4
max = 21

min = 1
max = 42

23 3 3442 1

4 10 21 11 23 3 3442 1

18 / 55 Divide and Conquer



Algorithm 3 MinMax (DnC)

1: procedure MinMax2(input: A, i , j , output: min, max)
2: if i = j then min ← A[i ]; max ← A[i ]
3: else
4: if i = j − 1 then . The array has size 2

5: if A[i ] < A[j ] then min ← A[i ]; max ← A[j ]
6: else min ← A[j ]; max ← A[i ]
7: end if
8: else
9: k ← (i + j) div 2 . Divide the array in the middle (position k)

10: MinMax2(A, i , k,min1,max1)
11: MinMax2(A, k + 1, j ,min2,max2)
12: if min1 < min2 then min ← min1
13: else min ← min2
14: end if
15: if max1 < max2 then max ← max2
16: else max ← max1
17: end if
18: end if
19: end if

20: end procedure

19 / 55 Divide and Conquer



MinMax problem (5)

Example:

4 10 21 11 23 3 3442

4 10 21 11 23 3 3442

4 10 21 11 23 3 3442

min = 4
max = 10

min = 11
max = 21

min = 3
max = 23

min = 34
max = 42

4 10 21 11 23 3 3442

min = 4
max = 21

min = 3
max = 42

min = 3, max = 42
4 10 21 11 23 3 3442

20 / 55 Divide and Conquer



MinMax problem (6)

Example:

4 10 21 11 23 3 3442

4 10 21 11 23 3 3442

4 10 21 11 23 3 3442

4 10 21 11

23 3 3442

min = 4
max = 21

min = 1, max = 42

1

1

1

42 34 1

3442 1

1

min = 11
max = 21

min = 4
max = 10

min = 3
max = 23

min = 42
max = 42

min = 1
max = 34

min = 1
max = 42

min = 1
max = 42

4 10 21 11 23 3 3442 1

21 / 55 Divide and Conquer



MinMax problem (7): Time complexity

Compute the number of comparisons T (n)

T (n) =


0 if n = 1

1 if n = 2

2 · T (n/2) + 2 if n > 2

The explicit formula:

T (n) = 2 · T (n/2) + 2

= 2 · (2 · T (n/4) + 2) + 2 = 4 · T (n/4) + (4 + 2)

= 4 · (2 · T (n/8) + 2) + 4 + 2 = 8 · T (n/8) + (8 + 4 + 2)

...

= 2k−1 · 1 +
k−1∑
i=1

2i

= 2k−1 + 2k − 2

= n/2 + n − 2

= 3n/2− 2 ∈ O(n)

22 / 55 Divide and Conquer



MinMax problem (8): Time complexity

Brute force MinMax1: T (n) = 2n − 2

DnC MinMax2: T (n) = 3n/2− 2

3n/2− 2 < 2n − 2⇔ for n ≥ 2

The MinMax problem is more efficient to solve with DnC
algorithm. But, asymptotically, both algorithms do not differ too
much.

23 / 55 Divide and Conquer



DnC-based sorting algorithms

24 / 55 Divide and Conquer



DnC-based sorting (1)

Review

Sorting problem: Given an ordorable array A[0..n − 1] (of size
n). The array A is sorted if the elements in A is ordered in an
ascending or descending order.

Recall that the brute-force-based sorting algorithms such as
selection sort, bubble sort, and insertion sort have time
complexity O(n2).

Can we produce a sorting algorithm with a better time
complexity using DnC approach?

25 / 55 Divide and Conquer



DnC-based sorting (2)

Idea of DnC-based sorting procedures:

If the array has size n = 1, then the array is sorted.

If the array has size n > 1, then divide the array into two
sub-arrays, then sort each sub-array.

Merge the sorted sub-arrays into a sorted array. This is the
result of the algorithm.

26 / 55 Divide and Conquer



DnC-based sorting (3): scheme

4 10 21 11 23 3 3442 1

1 3 4 10 11 21 3423 42

4 10 21 11 23 3 3442 1

1 3 3423 424 10 11 21

DIVIDE

COMBINE

CONQUER: sort each sub-array

A

A1 A2

27 / 55 Divide and Conquer



Algorithm 4 DnC-based Sorting scheme

1: procedure DnCSort(A[0..n − 1]: array, n: integer)
2: if size(A) = 1 then
3: return A
4: end if
5: Divide(A, A1, A2) of size n1 and n2 resp. . n2 = n − n1

6: DnCSort(A1, n1) . A1 = A[0..n1 − 1]

7: DnCSort(A2, n2) . A2 = A[n1..n − 1]

8: Combine(A1, A2, A)
9: end procedure

Divide and Combine procedures depend on the problem.

28 / 55 Divide and Conquer



DnC-based sorting (4)

Two approaches of DnC sorting algorithms

1 Easy split/hard join

The Divide step of the array is computationally easy
The Combine step is computationally hard

Examples: Merge Sort, Insertion Sort

2 Hard split/easy join

The Divide step of the array is computationally hard
The Combine step is computationally easy

Examples: Quick Sort, Selection Sort

29 / 55 Divide and Conquer



DnC-based sorting (5)

Example

Given an array A = [4, 12, 3, 9, 1, 21, 5, 1]

1. Easy split/hard join: A is split based on the elements’ positions

Divide: A1 = [4, 12, 3, 9] and A2 = [1, 21, 5, 2]

Sort: A1 = [3, 4, 9, 12] and A2 = [1, 2, 5, 21]

Combine: A = [1, 2, 3, 4, 5, 9, 12, 21]

2. Hard split/easy join: A is split based on the elements values

Divide: A1 = [4, 2, 3, 1] and A2 = [9, 21, 5, 12]

Sort: A1 = [1, 2, 3, 4] and A2 = [5, 9, 12, 21]

Combine: A = [1, 2, 3, 4, 5, 9, 12, 21]

30 / 55 Divide and Conquer



Merge Sort

31 / 55 Divide and Conquer



Merge Sort (1)

Basic idea:

4 10 21 11 23 3 3442 1

1 3 4 10 11 21 3423 42

4 10 21 11 23 3 3442 1

1 3 3423 424 10 11 21

DIVIDE

COMBINE

CONQUER: sort each sub-array

A

A1 A2

32 / 55 Divide and Conquer



Merge Sort (2)

Algorithm:

Input: array A, integer n
Output: array A sorted

1 If n = 1, then A is sorted
2 If n > 1, then

Divide: split A into two parts, each of size bn/2c and dn/2e
Conquer: recursively, implement MergeSort in each
sub-array
Merge: combine the sorted sub-arrays into the sorted array A

33 / 55 Divide and Conquer



Merge Sort (3)

Algorithm 5 Merge Sort

1: procedure MergeSort(A: ordorable array, i , j : integer) . i : starting

index, j : last index, initialization: i = 0, j = n − 1 (i.e. the whole array A)

2: if i = j then . length(A) = 1

3: return A[i ]
4: end if
5: k ← (i + j) div 2 . Divide the array into two

6: MergeSort(A, i , k) . Sort the sub-array A[i..k]

7: MergeSort(A, k + 1, j) . Sort the sub-array A[k + 1..j]

8: Merge(A, i , k , j) . Merge sorted A[i..k] and A[k + 1..j] into the sortedA[i..j]

9: end procedure

k k + 1 ji

A

34 / 55 Divide and Conquer



Algorithm 6 “Merge” in MergeSort

1: procedure Merge(A, i , k , j) . A[i..k] and A[k + 1..j] are sorted (ascending)

2: output: Array A[i ..j ] sorted (ascending)
3: declaration
4: B : temporary array to store the merged values
5: end declaration

6: p ← i ; q ← k + 1; r ← i
7: while p ≤ k and q ≤ j do . while the left-array and the right-array are not finished

8: if A[p] ≤ A[q] then
9: B[r ]← A[p] . B is a temporary array to store the merged array; assign A[p] (of left

array) to B

10: p ← p + 1
11: else
12: B[r ]← A[q] . Assign A[q] (of right array) to B

13: q ← q + 1
14: end if
15: r ← r + 1

16: end while . At this point, p > k or q > j

35 / 55 Divide and Conquer



1: while p ≤ k do . If the left-array is not finished, copy the rest of left-array A to B (if any)

2: B[r ]← A[p]
3: p ← p + 1
4: r ← r + 1
5: end while
6: while q ≤ j do . If the right-array is not finished, copy the rest of right-array A to B (if any)

7: B[r ]← A[q]
8: q ← q + 1
9: r ← r + 1

10: end while
11: for r ← i to j do . Assign back all elements of B to A

12: A[r ]← B[r ]
13: end for
14: return A . A is in ascending order

15: end procedure

Remark. the line numbering of the code is continued from the
previous slide: 17, 18, 19, ...

36 / 55 Divide and Conquer



Merge Sort (4): Procedure Merge example

4 10 21 11 23 3 42 34 1

4 10 11 21 3 23 42 1 34

4 10 11 21 423 23

34 42231 3

1 3 4 10 34 422311 21

Figure: Example of Merge procedure

37 / 55 Divide and Conquer



Merge Sort (5): Procedure MergeSort example

4 10 21 11 23 3 42 34 1

4 10 11 21 3 23 42 1 34

4 10 11 21 423 23

34 42231 3

1 3 4 10 34 422311 21

4 10 21 11

23 3 42

4 10 21 11

23 3 42 34 1

23 3 42 34 1

4 10 21 11 23 3 42 34 1

Figure: Example of MergeSort procedure

38 / 55 Divide and Conquer



Merge Sort (4): Time complexity (TC)

Computing the TC of Merge Sort is similar to computing the TC
of other recursive algorithms.

The complexity of Merge Sort algorithm is measured from the
number of comparisons of the elements in the array that is
denoted by T (n).

The number of comparisons is in O(n), or cn for some
constant c .
(Here, we cannot compute exactly how many comparisons that we

perform, because the Merge procedure involves many operations.)

So T (n) = 2T (n/2) + cn, for some constant c

Hence:

T (n) =

{
0, n = 1

2T (n/2) + cn, n > 1

39 / 55 Divide and Conquer



Merge Sort (4): Time complexity

The explicit function can be computed by iteratively substituting
the function. For simplification, we compute the special case, when
n = 2k for some integer k .

T (n) = 2T (n/2) + cn

= 2(2T (n/4) + cn) + 3cn

= 4(2T (n/8) + cn) + 3cn

...

= 2kT (n/2k) + kcn

Since n = 2k , then k = log2 n. This yields:

T (n) = n · T (1) + cn · log2 n = 0 + cn · log2 n ∈ O(n log n)

This shows that Merge Sort has a better complexity (O(n log n))
than the brute-force-based sorting algorithms (O(n2)).

40 / 55 Divide and Conquer



Recursive Insertion Sort

Special case of Merge Sort

41 / 55 Divide and Conquer



Insertion sort (1): Principal

This is an easy split/hard join-sorting.

We have seen an iterative version of Insertion Sort algorithm.
We can also view it in a recursive way: it is a special case of
Merge Sort.

The array is split into two sub-arrays, where the first sub-array
only consists of one element, and the second sub-array
consists of n − 1 elements.

1 n− 1

42 / 55 Divide and Conquer



Insertion sort (2): Pseudocode

Algorithm 7 Recursive Insertion Sort

1: procedure InsertionSort(A: ordorable array, i , j : integers)
2: output: A in ascending order

3: if i < j then . size(A) > 1

4: k ← i . A is split at position i (initialize as i = 0

5: InsertionSort(A, i , k) . sort the sub-array A[i..k]

6: InsertionSort(A, k + 1, j) . sort the sub-array A[k + 1..j]

7: Merge(A, i , k , j) . merge the sub-array A[i..k] and A[k + 1..j] into A[i..j]

8: end if
9: end procedure

43 / 55 Divide and Conquer



Insertion sort (3): Pseudocode

Remark. Since the left sub-array is of size 1, then we may remove the

InsertionSort procedure for the left sub-array.

Algorithm 8 Insertion Sort

1: procedure InsertionSort(A: ordorable array, i , j : integers)
2: output: A in ascending order
3: initialization: i ← 0, j ← n − 1
4: if i < j then . size(A) > 1

5: k ← i . A is split at position i (initialize as i = 0

6: InsertionSort(A, k + 1, j) . sort the sub-array A[k + 1..j]

7: Merge(A, i , k , j) . merge the sub-array A[i ] and A[k + 1..j] into A[i..j]

8: end if
9: end procedure

Remark. The Merge procedure can be replaced with the ’Insertion

method’ used in the iterative version.

44 / 55 Divide and Conquer



Insertion sort (4): Example

Example: Suppose that we want to sort the array

A = [4, 10, 21, 11, 23, 3, 42, 34, 1].

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 34 1

Figure: The ’Divide’ and ’Conquer’ steps

45 / 55 Divide and Conquer



Insertion sort (5): Example

4 10 21 11 23 3 42 34 1

4 10 21 11 23 3 42 1 34

4 10 21 11 23 3 1 3 34

4 10 21 11 23 42

4 10 21 11 1 3 23 34 42

4 10 21 1 3 11 23 34 42

4 10 1 3 11 21 23 34 42

4 1 3 10 11 21 23 34 42

1 3 4 10 11 21 23 34 42

1 3 34

Figure: Applying the Merge procedure

46 / 55 Divide and Conquer



Insertion sort (6): Time complexity

The recursive formula for the TC:

T (n) =

{
a, n = 1

T (n − 1) + cn, n > 1

The explicit formula is obtained by recursive substitution:

T (n) = T (n − 1) + cn

= (T (n − 2) + c(n − 1)) + cn = T (n − 2) + (cn + c(n − 1))

= (T (n − 3) + c(n − 2)) + (cn + c(n − 1)) = T (n − 3)+

(cn + c(n − 1) + c(n − 2))

...

= cn + c(n − 1) + c(n − 2) + · · ·+ 2c + a

= c

(
1

2
· (n − 1)(n + 2)

)
=

cn2

2
+

cn

2
+ (a− c)

= O(n2) (same as in the iterative version)

47 / 55 Divide and Conquer



Quick Sort
Click here

48 / 55 Divide and Conquer



Recursive Selection Sort

Special case of Quick Sort

49 / 55 Divide and Conquer



Selection sort (1): Principal

This is a hard split/easy join-sorting.

We have seen an iterative version of Selection Sort algorithm. We
can also view it in a recursive way, as a special case of Quick Sort.

The array is split into two sub-arrays, where the first sub-array only
consists of one element, and the second sub-array consists of n − 1
elements.

1 n− 1

Remark. This method follows the Levitin’s version of
SelectionSort (by looking for the min element). In the other
version (if we look for the max element), the right sub-array has size
one and the left sub-array has size n − 1.

50 / 55 Divide and Conquer



Selection sort (2): Pseudocode

Remark. Since the left sub-array is of size 1, then we do not need to

recursive call InsertionSort for the left sub-array.

Algorithm 9 Recursive Selection Sort

1: procedure SelectionSort(A: ordorable array, i , j : integers)
2: input: array A[i ..j ]
3: output: A[i ..j ] in ascending order

4: initialization: i ← 0, j ← n − 1
5: if i < j then . size(A) > 1

6: Partition(A, i , j) . Partition the array into sub-arrays of size 1 and n − 1

7: SelectionSort(A, i + 1, j) . Sort only the right sub-array

8: end if
9: end procedure

51 / 55 Divide and Conquer



Selection sort (3): Pseudocode

Remark. Since the left sub-array is of size 1, then we do not need to

recursive call InsertionSort for the left sub-array.

Algorithm 10 Partition procedure

1: procedure Partition(A: ordorable array, i , j : integers) .
Partition A[i..j] by looking for the minimum element and assign it to A[i ]

2: idxMin← i
3: for k ← i + 1 do to j
4: if A[k] < A[idxMin] then
5: idxMin← k
6: end if
7: end for
8: Swap(A[i ],A[idxMin]) . Exchange A[i ] and A[idxMin]

9: end procedure

52 / 55 Divide and Conquer



Selection sort (4): Example

Suppose that we want to sort the array:
A = [4, 10, 21, 11, 23, 3, 42, 34, 1]

4 10 21 11 23 3 42 34 1

1 10 21 11 23 3 42 34 4

1 3 21 11 23 10 42 34 4

1 3 4 11 23 10 42 34 21

1 3 4 10 23 11 42 34 21

1 3 4 10 11 23 42 34 21

1 3 4 10 11 21 42 34 23

1 3 4 10 11 21 23 34 42

1 3 4 10 11 21 23 34 42

1 3 4 10 11 21 23 34 42

1 3 4 10 11 21 23 34 42

X Unsorted

X Sorted

X
Current 
left sub-array

53 / 55 Divide and Conquer



Selection sort (4): Time complexity

The recursive formula for the TC:

T (n) =

{
a, n = 1

T (n − 1) + cn, n > 1

The explicit formula is obtained by substitution (as in Insertion Sort):

T (n) = T (n − 1) + cn

= (T (n − 2) + c(n − 1)) + cn = T (n − 2) + (cn + c(n − 1))

= (T (n − 3) + c(n − 2)) + (cn + c(n − 1)) = T (n − 3)+

(cn + c(n − 1) + c(n − 2))

...

= cn + c(n − 1) + c(n − 2) + · · ·+ 2c + a

= c

(
1

2
· (n − 1)(n + 2)

)
=

cn2

2
+

cn

2
+ (a− c)

= O(n2) (same as in the iterative version)

54 / 55 Divide and Conquer



Conclusion

What can we conclude from the four sorting algorithms?

Splitting the array into two balanced arrays (of size n/2 each) will
result in the best algorithm performance (in the case of Merge Sort
and Quick Sort, namely O(n log n)).

While the unbalanced split (into 1 element and n − 1 elements)
results in poor algorithm performance (in the case of Insertion sort
and Selection sort, namely O(n2)).

55 / 55 Divide and Conquer


