06 - Divide and Conquer (part 1)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 14-18 March 2022

- The principal of divide-and-conquer algorithm
- Time complexity analysis of divide-and-conquer
- Example of divide-and-conquer algorithms: MinMax problem
- Divide-and-conquer based sorting
 - Merge Sort
 - Insertion Sort
 - Quick Sort
 - Selection Sort

Scheme of divide and conquer (DnC) algorithm

DIVIDE: breaking down the problem into two or more sub-problems that have the same or similar type, until these become simple enough to be solved directly. Ideally, the size of the sub-problems are equal.

CONQUER: solving each of the sub-problems, directly (if the size is small) or recursively (if the size is still big).

COMBINE: combining the solutions to the sub-problems to produce a solution to the original problem.

The principal of divide-and-conquer algorithm

In the most typical case of divide-and-conquer, a problem's instance of size n is divided into two instances of size n/2.

source: book of Anany Levitin

< ロ > < 同 > < 三 > < 三 > <

The principal of divide-and-conquer algorithm

source: https://cdn.kastatic.org/ka-perseus-images/db9d172fc33b90e905c1213b8cce660c228bb99c.png

э

- Merge sort
- Quick sort
- Closest pair problem
- Onvex hull problem (haven't discussed yet)
- Matrix multiplication
- Strassen's algorithm
- Ø Karatsuba algorithm for fast multiplication
- Multiplication of two polynomials

Divide and conquer vs Brute force

Study case: sum of array of integers

Problem

Given an array containing n integers $a_0, a_1, \ldots, a_{n-1}$. Find $a_0 + a_1 + \cdots + a_{n-1}$.

Brute-force approach? add the element sequentially (one-by-one)

Divide-and-conquer:

- If n = 1, then return a_0 ;
- If n > 1, then recursively do the following: divide into two sub-arrays, then compute the sum of each sub-array.

$$a_0 + a_1 + \cdots + a_{n-1} = (a_0 + \cdots + a_{\lfloor n/2 \rfloor - 1}) + (a_{\lfloor n/2 \rfloor} + \cdots + a_{n-1})$$

Which technique is more efficient?

Divide and conquer vs Brute force

Study case: sum of array of integers

Problem

Given an array containing n integers $a_0, a_1, \ldots, a_{n-1}$. Find $a_0 + a_1 + \cdots + a_{n-1}$.

Brute-force approach? add the element sequentially (one-by-one)

Divide-and-conquer:

- If n = 1, then return a_0 ;
- If n > 1, then recursively do the following: divide into two sub-arrays, then compute the sum of each sub-array.

$$a_0+a_1+\cdots+a_{n-1}=(a_0+\cdots+a_{\lfloor n/2\rfloor-1})+(a_{\lfloor n/2\rfloor}+\cdots+a_{n-1})$$

Which technique is more efficient?

Divide and conquer vs Brute force

- DnC is probably the best-known general algorithm design technique.
- Not every divide-and-conquer algorithm is necessarily more efficient than (even) a brute-force solution.
- Often, the time spent on executing the DnC algorithm is significantly smaller than solving a problem by a different method.
- The DnC approach yields some of the most important and efficient algorithms in CS.

Algorithm 1 General scheme of divide-and-conquer			
1:	procedure DIVIDECONQUER(<i>P</i> : problem, <i>n</i> : integer)		
2:	if $n \le n_0$ then $\triangleright P$ is small enough		
3:	Solve P		
4:	else		
5:	DIVIDE to r sub-problems P_1, \ldots, P_r of size n_1, \ldots, n_r		
6:	for each P_1, \ldots, P_r do		
7:	DIVIDECONQUER (P_i, n_i)		
8:	end for		
9:	COMBINE the solutions of P_1, \ldots, P_r to solution of P		
10:	end if		
11:	end procedure		

æ

@ ▶ ∢ ≣

DnC analysis of time complexity

Time complexity divide and conquer

$$T(n) = \begin{cases} g(n), & n \le n_0 \\ T(n_1) + T(n_2) + \dots + T(n_r) + f(n), & n \ge n_0 \end{cases}$$

- T(n): the time complexity of problem P (of size n)
- g(n): time complexity for SOLVE if n is small (i.e. $n \le n_0$)
- $T(n_1) + T(n_2) + \cdots + T(n_r)$: time complexity to proceed each sub-problem
- f(n): time complexity to DIVIDE the problem and COMBINE the solution of each sub-problem

Time complexity divide and conquer

An ideal situation is when the DIVIDE operation always produces two sub-problems of size half of the problem.

1:	1: procedure DIVIDECONQUER(<i>P</i> : problem, <i>n</i> : integer)				
2:	if $n \leq n_0$ then	▷ P is small enough			
3:	Solve P				
4:	else				
5:	DIVIDE to 2 sub-problems	P_1, P_2 of size $n/2$			
6:	DIVIDECONQUER($P_1, n/2$)				
7:	DIVIDECONQUER($P_2, n/2$)				
8:	COMBINE the solutions of	P_1, P_2 to solution of P			
9:	end if				
10:	end procedure				

If the instance is always divided into two sub-instances at each step, then:

$$T(n) = \begin{cases} g(n), & n \le n_0 \\ 2T(n/2) + f(n), & n \ge n_0 \end{cases}$$

More generally, if the instance is always divided into $b \ge 1$ instances of equal size, where $a \ge 1$ instances need to be solved, then the complexity is given by:

T(n) = aT(n/b) + f(n)

The order of growth of its solution T(n) depends on the values of the constants *a* and *b* and the order of growth of the function f(n).

MinMax Problem: An example of DnC algorithm

Problem

Given an array A of n integers. Find the min and max of the array simultaneously.

Example:

Figure: An array of integers, and the min & max of the array

→ < ∃ →</p>

Algorithm 2 MinMax (brute-force)				
1:	procedure MINMAX1(A[0n-1]: array, <i>n</i> : integer)		
2:	$min \leftarrow A[0]$	> Assign the first element as the minimum		
3:	$max \gets A[0]$	Assign the first element as the maximum		
4:	for $i \leftarrow 1$ to $n-1$ do			
5:	if <i>A</i> [<i>i</i>] < min then			
6:	$min \leftarrow \mathcal{A}[i]$			
7:	end if			
8:	if $A[i] > max$ ther	$\mathbf{n} \max \leftarrow A[i]$		
9:	end if			
10:	end for			
11:	end procedure			

æ

▲御▶ ▲ 副▶

MinMax problem (3)

The scheme of Minmax with divide-and-conquer

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Algorithm 3 MinMax (DnC)

1.	procedure MINMANO(inpute A i i outpute min max)
T:	procedure iviniviAX2(input: A, I, J, output: min, max)
2:	if $i = j$ then min $\leftarrow A[i]$; max $\leftarrow A[i]$
3:	else
4:	if $i = j - 1$ then \triangleright The array has size 2
5:	$\mathbf{if} \ A[i] < A[j] \ \mathbf{then} \ \min \leftarrow A[i]; \ \ \max \leftarrow A[j]$
6:	else min $\leftarrow A[j]; max \leftarrow A[i]$
7:	end if
8:	else
9:	$k \leftarrow (i+j)$ div 2 \triangleright Divide the array in the middle (position k)
10:	$MINMAX2(A, i, k, min_1, max_1)$
11:	$MINMAX2(A, k + 1, j, min_2, max_2)$
12:	$\textbf{if } \min_1 < \min_2 \textbf{ then } \min \leftarrow \min_1$
13:	$else \ min \leftarrow min_2$
14:	end if
15:	$\textbf{if} \ max_1 < max_2 \ \textbf{then} \ max \leftarrow max_2$
16:	$\textbf{else} \ max \gets max_1$
17:	end if
18:	end if
19:	end if
20:	end procedure

 ${\color{red}{\leftarrow}} \Box >$

(古) (日) (日)

Ξ.

MinMax problem (5)

Example:

æ

< ロ > < 同 > < 三 > < 三 >

MinMax problem (6)

Example:

MinMax problem (7): Time complexity

Compute the number of comparisons T(n)

$$T(n) = \begin{cases} 0 & \text{if } n = 1\\ 1 & \text{if } n = 2\\ 2 \cdot T(n/2) + 2 & \text{if } n > 2 \end{cases}$$

The explicit formula:

$$T(n) = 2 \cdot T(n/2) + 2$$

= 2 \cdot (2 \cdot T(n/4) + 2) + 2 = 4 \cdot T(n/4) + (4 + 2)
= 4 \cdot (2 \cdot T(n/8) + 2) + 4 + 2 = 8 \cdot T(n/8) + (8 + 4 + 2)
:
= 2^{k-1} \cdot 1 + \sum_{i=1}^{k-1} 2^{i}
= 2^{k-1} + 2^{k} - 2
= n/2 + n - 2
= 3n/2 - 2 \cdot \mathcal{O}(n)

MinMax problem (8): Time complexity

- Brute force MINMAX1: T(n) = 2n 2
- DnC MINMAX2: T(n) = 3n/2 2

$$3n/2 - 2 < 2n - 2 \Leftrightarrow$$
 for $n \ge 2$

The MinMax problem is more efficient to solve with DnC algorithm. But, asymptotically, both algorithms do not differ too much.

DnC-based sorting algorithms

Review

- Sorting problem: Given an ordorable array A[0..n-1] (of size n). The array A is **sorted** if the elements in A is ordered in an ascending or descending order.
- Recall that the brute-force-based sorting algorithms such as selection sort, bubble sort, and insertion sort have time complexity $O(n^2)$.
- Can we produce a sorting algorithm with a better time complexity using DnC approach?

Idea of DnC-based sorting procedures:

- If the array has size n = 1, then the array is sorted.
- If the array has size n > 1, then divide the array into two sub-arrays, then sort each sub-array.
- Merge the sorted sub-arrays into a sorted array. This is the result of the algorithm.

DnC-based sorting (3): scheme

æ

э

・ 一 マ ト ・ 日 ト ・

Algorithm 4 DnC-based Sorting scheme

1: procedure DNCSORT(A[0..n-1]: array, n: integer) if size(A) = 1 then 2: 3: return A end if 4. DIVIDE(A, A_1 , A_2) of size n_1 and n_2 resp. 5: $\triangleright n_2 = n - n_1$ DNCSORT (A_1, n_1) 6: $\triangleright A_1 = A[0..n_1 - 1]$ $DNCSORT(A_2, n_2)$ 7: $\triangleright A_2 = A[n_1..n-1]$ COMBINE(A_1, A_2, A) 8: 9: end procedure

• DIVIDE and COMBINE procedures depend on the problem.

DnC-based sorting (4)

Two approaches of DnC sorting algorithms

Easy split/hard join

- The **Divide** step of the array is computationally easy
- The Combine step is computationally hard
- Examples: Merge Sort, Insertion Sort

a Hard split/easy join

- The Divide step of the array is computationally hard
- The Combine step is computationally easy
- Examples: Quick Sort, Selection Sort

Example

Given an array A = [4, 12, 3, 9, 1, 21, 5, 1]

- 1. Easy split/hard join: A is split based on the elements' positions
 - Divide: $A_1 = [4, 12, 3, 9]$ and $A_2 = [1, 21, 5, 2]$
 - Sort: $A_1 = [3, 4, 9, 12]$ and $A_2 = [1, 2, 5, 21]$
 - Combine: A = [1, 2, 3, 4, 5, 9, 12, 21]
- 2. Hard split/easy join: A is split based on the elements values
 - Divide: $A_1 = [4, 2, 3, 1]$ and $A_2 = [9, 21, 5, 12]$
 - Sort: $A_1 = [1, 2, 3, 4]$ and $A_2 = [5, 9, 12, 21]$
 - Combine: A = [1, 2, 3, 4, 5, 9, 12, 21]

伺 と く き と く き と … き

Merge Sort

æ

▲圖 ▶ ▲ 圖 ▶

Basic idea:

æ

・ 同 ト ・ ヨ ト ・ ヨ ト

Algorithm:

Input: array *A*, integer *n* Output: array *A* sorted

- If n = 1, then A is sorted
- 2 If n > 1, then
 - **Divide:** split A into two parts, each of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$
 - **Conquer:** recursively, implement MERGESORT in each sub-array
 - Merge: combine the sorted sub-arrays into the sorted array A

Algorithm 5 Merge Sort

1: **procedure** MERGESORT(A: ordorable array, i, j: integer) \triangleright *i*: starting

index, j: last index, initialization: i = 0, j = n - 1 (i.e. the whole array A)

- 2: if i = j then \triangleright length(A) = 1 3: return A[i] 4: end if 5: $k \leftarrow (i+j) \operatorname{div} 2$ \triangleright Divide the array into two
- 6: MERGESORT(A, i, k) \triangleright Sort the sub-array A[i..k]7: MERGESORT(A, k + 1, j) \triangleright Sort the sub-array A[k + 1..j]
- 8: MERGE(A, i, k, j) \triangleright Merge sorted A[i..k] and A[k + 1..j] into the sortedA[i..j]
- 9: end procedure

→ < ∃ →</p>

Algorithm 6 "Merge" in MERGESORT

- 1: procedure $MERGE(A, i, k, j) \ge A[i..k]$ and A[k + 1..j] are sorted (ascending)
- 2: **output:** Array A[i..j] sorted (ascending)
- 3: declaration
- 4: B: temporary array to store the merged values
- 5: end declaration

6: $p \leftarrow i$; $q \leftarrow k+1$; $r \leftarrow i$ 7: while $p \leq k$ and $q \leq j$ do while the left-array and the right-array are not finished if A[p] < A[q] then 8: $B[r] \leftarrow A[p] \triangleright B$ is a temporary array to store the merged array; assign A[p] (of left 9. array) to B 10: $p \leftarrow p + 1$ 11: else 12: $B[r] \leftarrow A[q]$ Assign A[a] (of right array) to B 13: $q \leftarrow q + 1$ end if 14: 15: $r \leftarrow r + 1$ 16: end while \triangleright At this point, p > k or q > j

1:	while $p \leq k$ do	▶ If the left-array is not finished, copy the rest of left-array A to B (if any)
2:	$B[r] \leftarrow A[p]$	
3:	$p \leftarrow p+1$	
4:	$r \leftarrow r+1$	
5:	end while	
6:	while $q \leq j$ do	\triangleright If the right-array is not finished, copy the rest of right-array A to B (if any)
7:	$B[r] \leftarrow A[q]$	
8:	$q \leftarrow q+1$	
9:	$r \leftarrow r+1$	
10:	end while	
11:	for $r \leftarrow i$ to j do	▷ Assign back all elements of B to A
12:	$A[r] \leftarrow B[r]$	
13:	end for	
14:	return A	▷ A is in ascending order
15:	end procedure	

Remark. the line numbering of the code is continued from the previous slide: 17, 18, 19, ...

Merge Sort (4): Procedure MERGE example

Figure: Example of MERGE procedure

→ < ∃ →</p>

э

Merge Sort (5): Procedure MERGESORT example

Figure: Example of MERGESORT procedure

38 / 55 Divide and Conquer

> < 프 > < 프 >

æ

Merge Sort (4): Time complexity (TC)

Computing the TC of Merge Sort is similar to computing the TC of other recursive algorithms.

- The complexity of Merge Sort algorithm is measured from the number of comparisons of the elements in the array that is denoted by T(n).
- The number of comparisons is in $\mathcal{O}(n)$, or *cn* for some constant *c*.

(Here, we cannot compute exactly how many comparisons that we perform, because the MERGE procedure involves many operations.)

• So T(n) = 2T(n/2) + cn, for some constant c

• Hence:

$$T(n) = \begin{cases} 0, & n = 1\\ 2T(n/2) + cn, & n > 1 \end{cases}$$

Merge Sort (4): Time complexity

• The explicit function can be computed by iteratively substituting the function. For simplification, we compute the special case, when $n = 2^k$ for some integer k.

$$T(n) = 2T(n/2) + cn$$

= 2(2T(n/4) + cn) + 3cn
= 4(2T(n/8) + cn) + 3cn

$$=2^kT(n/2^k)+kcn$$

Since $n = 2^k$, then $k = \log_2 n$. This yields:

 $T(n) = n \cdot T(1) + cn \cdot \log_2 n = 0 + cn \cdot \log_2 n \in \mathcal{O}(n \log n)$

 This shows that Merge Sort has a better complexity (O(n log n)) than the brute-force-based sorting algorithms (O(n²)).

Recursive Insertion Sort

Special case of Merge Sort

- This is an easy split/hard join-sorting.
- We have seen an iterative version of Insertion Sort algorithm. We can also view it in a recursive way: it is a special case of Merge Sort.
- The array is split into two sub-arrays, where the first sub-array only consists of one element, and the second sub-array consists of n 1 elements.

Algorithm 7 Recursive Insertion Sort

- procedure INSERTIONSORT(A: ordorable array, i, j: integers)
 output: A in ascending order
 if i < j then ▷ size(A) > 1
- 4: $k \leftarrow i$ \triangleright A is split at position i (initialize as i = 0
- 5: INSERTIONSORT(A, i, k) \triangleright sort the sub-array A[i...k]
- 6: INSERTIONSORT(A, k + 1, j) \triangleright sort the sub-array A[k + 1..j]
- 7: $MERGE(A, i, k, j) \triangleright merge the sub-array A[i..k] and A[k + 1..j] into A[i..j]$
- 8: end if
- 9: end procedure

Insertion sort (3): Pseudocode

Remark. Since the left sub-array is of size 1, then we may remove the INSERTIONSORT procedure for the left sub-array.

Algorithm 8 Insertion Sort

- 1: **procedure** INSERTIONSORT(A: ordorable array, *i*, *j*: integers)
- 2: **output:** A in ascending order
- 3: **initialization:** $i \leftarrow 0, j \leftarrow n-1$
- 4: **if** i < j **then** \triangleright size(A) > 1
- 5: $k \leftarrow i$ \triangleright A is split at position i (initialize as i = 0
- 6: INSERTIONSORT(A, k + 1, j) \triangleright sort the sub-array A[k + 1..j]
- 7: $MERGE(A, i, k, j) \triangleright merge the sub-array A[i] and A[k + 1..j] into A[i..j]$
- 8: **end if**
- 9: end procedure

Remark. The MERGE procedure can be replaced with the 'Insertion method' used in the iterative version.

Insertion sort (4): Example

Example: Suppose that we want to sort the array A = [4, 10, 21, 11, 23, 3, 42, 34, 1].

Figure: The 'Divide' and 'Conquer' steps

Insertion sort (5): Example

Figure: Applying the Merge procedure

▲御▶ ▲ 陸▶ ▲ 陸▶

э

Insertion sort (6): Time complexity

The recursive formula for the TC:

$$T(n) = \begin{cases} a, & n = 1\\ T(n-1) + cn, & n > 1 \end{cases}$$

The explicit formula is obtained by recursive substitution:

$$T(n) = T(n-1) + cn$$

= $(T(n-2) + c(n-1)) + cn = T(n-2) + (cn + c(n-1)))$
= $(T(n-3) + c(n-2)) + (cn + c(n-1)) = T(n-3) + (cn + c(n-1) + c(n-2)))$
:
= $cn + c(n-1) + c(n-2) + \dots + 2c + a$
= $c\left(\frac{1}{2} \cdot (n-1)(n+2)\right)$
= $\frac{cn^2}{2} + \frac{cn}{2} + (a-c)$
= $\mathcal{O}(n^2)$ (same as in the iterative version),

Quick Sort

Click here

æ

Recursive Selection Sort

Special case of Quick Sort

Selection sort (1): Principal

- This is a hard split/easy join-sorting.
- We have seen an iterative version of Selection Sort algorithm. We can also view it in a recursive way, as a special case of Quick Sort.
- The array is split into two sub-arrays, where the first sub-array only consists of one element, and the second sub-array consists of n 1 elements.

Remark. This method follows the Levitin's version of SELECTIONSORT (by looking for the min element). In the other version (if we look for the max element), the right sub-array has size one and the left sub-array has size n - 1.

Remark. Since the left sub-array is of size 1, then we do not need to recursive call INSERTIONSORT for the *left* sub-array.

Algorithm 9 Recursive Selection Sort

- 1: **procedure** SELECTIONSORT(A: ordorable array, *i*, *j*: integers)
- 2: **input:** array *A*[*i*..*j*]
- 3: **output:** A[i..j] in ascending order
- 4: **initialization:** $i \leftarrow 0, j \leftarrow n-1$
- 5: **if** *i* < *j* **then**

 \triangleright size(A) > 1

伺 ト イヨト イヨト

- 6: PARTITION $(A, i, j) \triangleright$ Partition the array into sub-arrays of size 1 and n 1
- 7: SELECTIONSORT(A, i + 1, j) \triangleright Sort only the right sub-array
- 8: end if
- 9: end procedure

Selection sort (3): Pseudocode

Remark. Since the left sub-array is of size 1, then we do not need to recursive call INSERTIONSORT for the *left* sub-array.

Algorithm 10 Partition procedure

1: **procedure** PARTITION(A: ordorable array, i, j: integers) \triangleright

Partition A[i..j] by looking for the minimum element and assign it to A[i]

- 2: $idxMin \leftarrow i$
- 3: for $k \leftarrow i + 1$ do to j
- 4: **if** A[k] < A[idxMin] **then**
- 5: $id \times Min \leftarrow k$
- 6: end if
- 7: end for
- 8: $SWAP(A[i], A[id \times Min])$
- 9: end procedure

Exchange A[i] and A[id×Min]

Selection sort (4): Example

Suppose that we want to sort the array: A = [4, 10, 21, 11, 23, 3, 42, 34, 1]

Selection sort (4): Time complexity

The recursive formula for the TC:

Τ

$$T(n) = \begin{cases} a, & n = 1\\ T(n-1) + cn, & n > 1 \end{cases}$$

The explicit formula is obtained by substitution (as in Insertion Sort):

$$T(n) = T(n-1) + cn$$

= $(T(n-2) + c(n-1)) + cn = T(n-2) + (cn + c(n-1))$
= $(T(n-3) + c(n-2)) + (cn + c(n-1)) = T(n-3) + (cn + c(n-1) + c(n-2))$
:
= $cn + c(n-1) + c(n-2) + \dots + 2c + a$
= $c\left(\frac{1}{2} \cdot (n-1)(n+2)\right)$
= $\frac{cn^2}{2} + \frac{cn}{2} + (a-c)$
= $\mathcal{O}(n^2)$ (same as in the iterative version), where $n = 1$ is the set of n

What can we conclude from the four sorting algorithms?

Splitting the array into two **balanced** arrays (of size n/2 each) will result in the best algorithm performance (in the case of Merge Sort and Quick Sort, namely $O(n \log n)$).

While the **unbalanced** split (into 1 element and n-1 elements) results in poor algorithm performance (in the case of Insertion sort and Selection sort, namely $O(n^2)$).