
05 - Recursive Algorithm

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 28 Feb - 4 March 2022

1 / 55 Recursive Algorithm



Table of contents

The principal of recursive algorithm

Some examples of recursive algorithms
1 Computing factorial
2 Proving correctness of Factorial by induction
3 Finding Maximum Element of an Array
4 Computing sum of elements in an array
5 Computing max recursively

Tower of Hanoi Problem

Binary search algorithm

Recursive powering

Redundancy in recursive algorithm

Fibonacci sequence

Advantages and drawbacks of recursive algorithm

2 / 55 Recursive Algorithm



What is recursion or recursive algorithm?

3 / 55 Recursive Algorithm



1. The principal of recursive algorithm

A recursive algorithm is an algorithm which calls itself with
”smaller (or simpler)” input values, and which obtains the result
for the current input by applying simple operations to the returned
value for the smaller (or simpler) input.

Characteristics of recursive algorithm:

1 It calls itself recursively

2 It has a base case

3 It must change it state and move towards the base case

A base case is the condition that allows the algorithm to stop recursing:
a base case is typically a problem that is small enough to solve directly.

A change of state means that some data that the algorithm is using is

modified. Usually the data that represents our problem gets smaller in

some way.

4 / 55 Recursive Algorithm



Recursion versus Iteration

Iteration: A function repeats a defined process until a condition
fails. This is usually done through a loop, such as a for or while
loop with a counter and comparative statement making up the
condition that will fail. An infinite loop for iteration occurs when
the condition never fails.

Recursion: Instead of executing a specific process within the
function, the function calls itself repeatedly until a certain
condition is met (this condition being the base case). The base
case is explicitly stated to return a specific value when a certain
condition is met. An infinite recursive loop occurs when the
function does not reduce its input in a way that will converge on
the base case.

5 / 55 Recursive Algorithm



Simple examples of
recursive algorithms

6 / 55 Recursive Algorithm



2.1 - Computing factorial (1): Problem statement

n! = n × (n − 1)× (n − 2)× · · · × 2× 1

The formula can be expressed recursively:

n! =

{
n × (n − 1)!, if n > 1

1, n = 1

7 / 55 Recursive Algorithm



2.1 - Computing factorial (2): Pseudocode

Algorithm 1 Factorial of a number

1: procedure Factorial(n)
2: if n = 1 then
3: return 1
4: else
5: temp = Factorial(n − 1)
6: return n ∗ temp
7: end if
8: end procedure

What is the base case?

n = 1

What is the change of states? n decreases

What is the complexity? O(n)

8 / 55 Recursive Algorithm



2.1 - Computing factorial (2): Pseudocode

Algorithm 2 Factorial of a number

1: procedure Factorial(n)
2: if n = 1 then
3: return 1
4: else
5: temp = Factorial(n − 1)
6: return n ∗ temp
7: end if
8: end procedure

What is the base case? n = 1

What is the change of states?

n decreases

What is the complexity? O(n)

8 / 55 Recursive Algorithm



2.1 - Computing factorial (2): Pseudocode

Algorithm 3 Factorial of a number

1: procedure Factorial(n)
2: if n = 1 then
3: return 1
4: else
5: temp = Factorial(n − 1)
6: return n ∗ temp
7: end if
8: end procedure

What is the base case? n = 1

What is the change of states? n decreases

What is the complexity?

O(n)

8 / 55 Recursive Algorithm



2.1 - Computing factorial (2): Pseudocode

Algorithm 4 Factorial of a number

1: procedure Factorial(n)
2: if n = 1 then
3: return 1
4: else
5: temp = Factorial(n − 1)
6: return n ∗ temp
7: end if
8: end procedure

What is the base case? n = 1

What is the change of states? n decreases

What is the complexity? O(n)

8 / 55 Recursive Algorithm



2.1 - Computing factorial (3): Diagram

Factorial(3)
Since n > 1,
then return 3 * Factorial(2)

Factorial(2)
Since n > 1,
then return 2 * Factorial(1)

Factorial(1)
Since n = 1,
then 1

Figure: Illustration of recursive algorithm Factorial with n = 3

9 / 55 Recursive Algorithm



2.1 - Computing factorial (4): Proving correctness by
induction

Induction base: from line 1, we see that the function works
correctly for n = 1.

Hypothesis: suppose the function works correctly when it is
called with n = m, for some m ≥ 1.

Induction step: We prove that it also works when it is called
with n = m + 1. By the hypothesis, we know the recursive call
works correctly for n = m and computes m!. Subsequently, it
is multiplied by n = m + 1, thus computes (m + 1)!. And this
is the value correctly returned by the program.

10 / 55 Recursive Algorithm



2.2 - Finding Maximum Element of an Array (1)

To compute the max of n elements for n > 1 recursively:

Compute the max of n − 1 elements

Compare with the last element to find the entire max

Algorithm 5 Finding maximum of an array

1: procedure Max(A[0..n − 1], int n)
2: if n = 1 then return A[0]
3: else
4: T = Max(A, n − 1)
5: if T < A[n − 1] then
6: return A[n − 1]
7: else
8: return T
9: end if

10: end if
11: end procedure

11 / 55 Recursive Algorithm



2.2 - Finding Maximum Element of an Array (1)

To compute the max of n elements for n > 1 recursively:

Compute the max of n − 1 elements

Compare with the last element to find the entire max

Algorithm 6 Finding maximum of an array

1: procedure Max(A[0..n − 1], int n)
2: if n = 1 then return A[0]
3: else
4: T = Max(A, n − 1)
5: if T < A[n − 1] then
6: return A[n − 1]
7: else
8: return T
9: end if

10: end if
11: end procedure

11 / 55 Recursive Algorithm



2.2 - Finding Maximum Element of an Array (2)

Task: Compute the following

Complexity?

Correctness?

12 / 55 Recursive Algorithm



2.3 - Computing sum of elements in an array (1)

Problem: Given an array of n elements A[0..n − 1]. We want to
compute the sum: S =

∑n−1
i=0 A[i ]

Algorithm 7 Sum of an array

1: procedure Sum(A[0..n], int n)
2: if n = 1 then return A[0]
3: else
4: S = Sum(A, n − 1)
5: S = S + A[n − 1]
6: if T < A[n − 1] then
7: return S
8: end if
9: end if

10: end procedure

13 / 55 Recursive Algorithm



2.3 - Computing sum of elements in an array (2)

Task: Compute the following

Complexity?

Correctness?

14 / 55 Recursive Algorithm



2.6. Recursive Max, 2nd approach (1)

Problem: Given an array A of n elements, we aim to find an
element of maximum value of the array.

Approach:

1 Divide the array into two halves sub-array, namely Left
sub-array and Right sub-array.

2 Find the max of each sub-array.

3 Compare the max value of the Left array and the Right array.

4 Return the maximum of the two values.

15 / 55 Recursive Algorithm



2.6. Recursive Max, 2nd approach (2)

Algorithm 8 Finding max of an array

1: procedure FindMax(A[i ..j ], n) . i , j are respectively the index of start, end of A

2: if n = 1 then return A[S ]
3: end if
4: m = b i+j

2 c
5: T1 = FindMax(A[i ..m], bn2c) . Recursive call the left sub-array

6: T2 = FindMax(A [(m + 1)..j ] , n − bn2c) . Rec. call right sub-array

7: if T1 ≥ T2 then return T1 . Compare the two max elements

8: else return T2

9: end if
10: end procedure

Remark. bxc means the largest integer that is ≤ x ;
example: b3.5c = 3

16 / 55 Recursive Algorithm



2.6. Recursive Max, 2nd approach (3)

Complexity analysis: Special case when n = 2k

Let f (n): the number of key-comparisons to find the max of an n-array,
with n = 2k for some positive integer k . Hence:

f (n) =

{
0, n = 1

1 + 2f (n/2), n ≥ 2

By repeated substitution:

f (n) = 1 + 2f (n/2)

= 1 + 2[1 + 2f (n/4)] = 1 + 2 + 2f (n/4)

= 1 + 2 + 4 + 8f (n/4)

...

= 1 + 2 + 4 + · · ·+ 2k−1 + 2k f (n/2k)

= 1 + 2 + 4 + · · ·+ 2k−1

= 2k − 1/(2− 1) = 2k − 1

= n − 1

17 / 55 Recursive Algorithm



2.6. Recursive Max, 2nd approach (4)

f (n): the number of key-comparisons to find the max of an
n-array, with n = 2k for some k ∈ Z+.

Complexity analysis: For general n

f (n) =

{
0, n = 1

f (bn2c) + f (n − bn2c) + 1, n ≥ 2

Prove that:

By induction, we obtain f (n) = n − 1. How?

18 / 55 Recursive Algorithm



Tower of Hanoi

19 / 55 Recursive Algorithm



3. Tower of Hanoi problem (1): Problem statement

Problem: there are three towers A, B, and C . Initially, there are n
disks of varying sizes stacked on tower A, ordered by their size,
with the largest disk on the bottom and the smallest one on the
top. The objective is to move all discs to the 2nd tower by keeping
their order.

Only one disk may be moved at a time in a restricted manner,
from the top of one tower to the top of another tower.

A larger disk must never be placed on top of a smaller disk.

Check https://www.mathsisfun.com/games/towerofhanoi.html for

an illustration of the problem

Tower A Tower B Tower C

20 / 55 Recursive Algorithm

https://www.mathsisfun.com/games/towerofhanoi.html


3. Tower of Hanoi problem (2): Illustration

Tower A Tower B Tower C

Figure: Initial configuration with 4 disks on Tower A

21 / 55 Recursive Algorithm



3. Tower of Hanoi problem (2): Illustration

Tower A Tower B Tower C

Figure: After recursively moving the top 3 disks from Tower A to Tower C

21 / 55 Recursive Algorithm



3. Tower of Hanoi problem (2): Illustration

Tower A Tower B Tower C

Figure: After moving the bottom disk from Tower A to Tower B

21 / 55 Recursive Algorithm



3. Tower of Hanoi problem (2): Illustration

Tower A Tower B Tower C

Figure: After recursively moving back 3 disks from Tower C to Tower B.

21 / 55 Recursive Algorithm



3. Tower of Hanoi problem (3): Pseudocode

Task: Write the pseudocode of the Tower of Hanoi problem!

Algorithm 9 Tower of Hanoi

1: procedure Towers(A,B,C , n)
2: if n = 1 then
3: MoveOne(A,B)
4: return
5: end if
6: Towers(A,C ,B, n − 1)
7: MoveOne(A,B)
8: Towers(C ,B,A, n − 1)
9: end procedure

Towers(A,B,C , n): move n disks from A to B, using A, B, C

MoveOne(A,B): move one disk from A to B

22 / 55 Recursive Algorithm



3. Tower of Hanoi problem (3): Pseudocode

Task: Write the pseudocode of the Tower of Hanoi problem!

Algorithm 10 Tower of Hanoi

1: procedure Towers(A,B,C , n)
2: if n = 1 then
3: MoveOne(A,B)
4: return
5: end if
6: Towers(A,C ,B, n − 1)
7: MoveOne(A,B)
8: Towers(C ,B,A, n − 1)
9: end procedure

Towers(A,B,C , n): move n disks from A to B, using A, B, C

MoveOne(A,B): move one disk from A to B

22 / 55 Recursive Algorithm



3. Tower of Hanoi problem (4): Proof of correctness

Correctness: by induction

Base case: For n = 1, a single move is made from A to B. So
the algorithm works correctly for n = 1.

For any n ≥ 2, suppose the algorithm works correctly for n−1.

Then, by the hypothesis, the recursive call of line 6 works
correctly and moves the top n − 1 disks to C, leaving the
bottom disk on tower A.

The next step, line 7, moves the bottom disk to B.

Finally, the recursive call of line 8 works correctly by the
hypothesis and moves back n − 1 disks from C to B.

Thus, the entire algorithm works correctly for n.

23 / 55 Recursive Algorithm



3. Tower of Hanoi problem (5): Time complexity analysis

Recurrence equation to analyze time complexity

Let f (n): the number of single moves to solve the problem for n disks

Hence we have the following relation:

f (n) =

{
1, if n = 1

1 + 2f (n − 1), n ≥ 2

Remark. The above formula is known as recursive formula; read this page

or watch this video to get an overview.

To obtain the explicit formula of f (n), we have to solve the
recurrence equation for f (n).

24 / 55 Recursive Algorithm

https://www.belajarstatistics.com/blog/2021/06/25/pengertian-rekursi/
https://www.youtube.com/watch?v=eAaP4XaB8hM


3. Tower of Hanoi problem (6): Time complexity analysis

Method 1: Repeated substitution

f (n) = 1 + 2 · f (n − 1)

= 1 + 2 + 4 · f (n − 2)

= 1 + 2 + 4 + 8 · f (n − 3)

= · · ·
= 1 + 2 + 22 + · · ·+ 2n−1 · f (1)

Substituting the base case f (1) = 1 and by the geometric sum
formula (click here to check the formula), we obtain:

f (n) =
2n − 1

2− 1
= 2n − 1

25 / 55 Recursive Algorithm

https://www.ruangguru.com/blog/barisan-dan-deret-geometri


3. Tower of Hanoi problem (7): Time complexity analysis

Method 2: Guess the solution and prove by induction
Suppose our guess is “f (n) is exponential”

Guess: f (n) = a · 2n + b

Inductive proof:

Induction base: n = 1

f (1) = 1 (from the reccurence)
f (1) = 2a + b (from the solution form)

So we have 2a + b = 1

Induction: Suppose that the solution is correct for some n ≥ 1:

f (n) = a · 2n + b

Then the solution must hold for n + 1, that is:

f (n + 1) = a · 2n+1 + b

26 / 55 Recursive Algorithm



3. Tower of Hanoi problem (8): Time complexity analysis

From the recurrence relation, we obtain:

f (n + 1) = 2f (n) + 1

= 2(a · 2n + b) + 1

= a · 2n+1 + (2b + 1)

From the two equations, we obtain:

a · 2n+1 + b = a · 2n+1 + (2b + 1)⇔ 2b + 1 = b ⇔ b = −1

Hence, 2a + b = 1⇔ a = 1. So, b = −1.

Hence, f (n) = a · 2n + b = 2n − 1.

27 / 55 Recursive Algorithm



Binary Search

28 / 55 Recursive Algorithm



4. Binary search algorithm (1): Principal

Problem: Given a sorted array A[0..n − 1] and a search key KEY .
The algorithm does the following:

If KEY = A[m], then return m

If KEY < A[m], then recursively search the left half of the
array

If KEY > A[m], then recursively search the right half of the
array

In each step, the size of the search is reduced by half.

29 / 55 Recursive Algorithm



4. Binary search algorithm (2): Diagram

source: https://www.enjoyalgorithms.com/blog/binary-search-algorithm

30 / 55 Recursive Algorithm

https://www.enjoyalgorithms.com/blog/binary-search-algorithm


4. Binary search algorithm (3): Pseudocode

Algorithm 11 Binary search algorithm

1: procedure BinSearch(A, i , j ,KEY )
2: if i > j then
3: return −1 . Base case is reached but KEY is not found

4: end if
5: m = b i+j

2 c . Choose the pivot

6: if KEY = A[m] then
7: return m . KEY is found at index m

8: else
9: if KEY < A[m] then . The KEY is located on the Left sub-array

10: return BinSearch(A, i ,m − 1,KEY ) . Rec-call left part

11: else
12: return BinSearch(A,m + 1, j ,KEY ) . Rec-call right part

13: end if
14: end if
15: end procedure

31 / 55 Recursive Algorithm



4. Binary search algorithm (4): Time complexity analysis

Let f (n) be the number of comparisons.

Complexity analysis: special case when n = 2k

f (n) =

{
1, n = 1

1 + f (n/2), n ≥ 2

By repeated substitution:

f (n) = 1 + f (n/2)

= 1 + 1 + f (n/4)

= 1 + 1 + 1 + f (n/8)

...

= k + f (n/2k)

= k + f (1)

= k + 1

= log n + 1

32 / 55 Recursive Algorithm



4. Binary search algorithm (5): Time complexity analysis

Complexity analysis: general case n

f (n) =

{
1, n = 1

1 + f (bn2c), n ≥ 2

By induction, we obtain f (n) = blog nc+ 1

Exercise: show it!

33 / 55 Recursive Algorithm



4. Binary search algorithm (6): Inductive proof for TC
analysis

Induction base: n = 1:
From the recurrence, f (1) = 1, and the claimed solution
f (1) = blog 1c+ 1 = 1. Correct.

Inductive proof: Suppose that the formula is correct for all smaller
values.

f (m) = blogmc, ∀m < n

Every integer n can be expressed as (for some integer k):

2k−1 ≤ bn/2c < 2k

So, blogbn/2cc = k − 1.

By the recursive function:

f (bn/2c) = blogbn/2cc+ 1 = (k − 1) + 1 = k = blog nc

Then:
f (n) = f (bn/2c) + 1 = k + 1 = blog nc+ 1

34 / 55 Recursive Algorithm



A more advanced example:
Recursive powering

35 / 55 Recursive Algorithm



5. Recursive powering (1): Problem statement

Problem: Given X and an integer n. We want to compute X n.

Algorithm 12 Recursive powering (brute force)

1: procedure Power1(X , n)
2: T = X
3: for i = 2 to n do
4: T = T ∗ X
5: end for
6: end procedure

Complexity: O(n). Why?

36 / 55 Recursive Algorithm



5. Recursive powering (2): Approach

Idea: X 16 = ((((X 2)2)2)2

Given n = 2k , we can do repeated squaring.

Algorithm 13 Recursive powering (special case)

1: procedure Power2(X , n = 2k)
2: T = X
3: for i = 2 to k do
4: T = T ∗ T
5: end for
6: end procedure

Complexity: O(log n). Why?

37 / 55 Recursive Algorithm



5. Recursive powering (3): Approach

Generalize the case for n: Computing X n for n ∈ Z+

Compute X 2 = X ∗ X
Compute X 3 = X 2 ∗ X
Compute X 6 = X 3 ∗ X 3

Compute X 12 = X 6 ∗ X 6

Compute X 13 = X 12 ∗ X

38 / 55 Recursive Algorithm



5. Recursive powering (4): Approach

Basic idea: Divide n by 2, n = n/2 + n/2. So

X n = X (n/2+n/2) = X n/2 · X n/2

The problem is n/2 is not always an integer. So we have to apply a
little modification:

For n = 0, then X n = 1

For n > 0, then:

If n is even, then X n = X n/2 · X n/2

If n is odd, then X n = X bn/2c · X bn/2c · X

39 / 55 Recursive Algorithm



5. Recursive powering (5): Pseudocode

Algorithm 14 Recursive powering

1: procedure Power3(X , n)
2: if n = 1 then
3: return X
4: end if
5: T = Power(X , bn2c)
6: T = T ∗ T
7: if n mod 2 = 1 then
8: T = T ∗ X
9: return T

10: end if
11: end procedure

Complexity: ?

40 / 55 Recursive Algorithm



5. Recursive powering (6): Example of implementation

Example: Computing 316

316 = 38 · 38 = (38)2

= ((34)2)2

= (((32)2)2)2

= ((((31)2)2)2)2

= ((((30) · 3)2)2)2)2

= (((1 · 3)2)2)2)2

= (((3)2)2)2)2

= (((9)2)2)2

= ((81)2)2

= (6561)2

= 43, 046, 721

41 / 55 Recursive Algorithm



5. Recursive powering (7): Correctness (informal proof )

Let n = 2m + r , where r ∈ {0, 1}.
The algorithm first makes a recursive call to compute T = Xm.

Then it squares T to get T = X 2m. If r = 0, this is returned.

Otherwise, when r = 1, the algorithm multiplies T by X , to result
in T = X 2m+1.

42 / 55 Recursive Algorithm



5. Recursive powering (8): Time complexity analysis

Let f (n): the worst-case number of multiplication steps to compute X n.

The recursive call takes f (bn2c) multiplications.

Then it is followed by one more multiplication. In the worst
case, when n is odd, one additional multiplication is
performed.

Hence,

f (n) =


0, if n = 1

f (bn2c) + 2, if n ≥ 2, n odd

f (bn2c) + 1, if n ≥ 2, n even

Show that f (n) = 2blog nc.

43 / 55 Recursive Algorithm



5. Recursive powering (8): Time complexity analysis

f (n) =


0, if n = 1

f (bn2c) + 2, if n ≥ 2, n odd

f (bn2c) + 1, if n ≥ 2, n even

The last two cases have small difference. So we can approximate
the function above with the following function to simplify the
computation:

f (n) =

{
0, if n = 1

f (bn2c) + 2, if n ≥ 2

44 / 55 Recursive Algorithm



5. Recursive powering (9): Inductive proof

Show that f (n) = 2blog nc.
Induction base (n = 1): From the recurrence, f (1) = 0, and from
the formula, f (1) = 2blog 1c = 0. Correct.

Inductive proof: Suppose that the formula is correct for all smaller
values.

f (m) = 2blogmc, ∀m < n

Every integer n can be expressed as (for some integer k):

2k ≤ n < 2k+1

So, blog nc = k , and b log n2 c = k − 1. By the recursive function:

f (n) = f (bn
2
c) + 2 = 2(k − 1) + 2 = 2k = 2blog nc

Remark. This gives a better complexity than the brute force
approach (O(n)).

45 / 55 Recursive Algorithm



Redundancy in
recursive algorithm

46 / 55 Recursive Algorithm



Redundancy (1): Recursive powering

Is it necessary to store Power(X , bn2c) in some variable T?

47 / 55 Recursive Algorithm



Redundancy (2): Recursive powering

Algorithm 15 Recursive powering

1: procedure Power4(X , n)
2: if n = 1 then
3: return X
4: end if
5: return Power(X , bn2c) ∗ Power(X , bn2c)
6: end procedure

Is the algorithm correct? What is the complexity?

48 / 55 Recursive Algorithm



Redundancy (3): Recursive powering

The algorithm is correct.

The number of recursive calls:

f (n) =

{
0, if n = 1

f (bn2c) + f (bn2c) + 1, if n ≥ 2

By induction, we can prove that f (n) = n − 1 (asymptotically
worse than the previous algorithm).

What can you conclude?

Power4 is also not efficient, because we make two recursive calls
for the same function f (bn2c)

49 / 55 Recursive Algorithm



Redundancy (3): Recursive powering

The algorithm is correct.

The number of recursive calls:

f (n) =

{
0, if n = 1

f (bn2c) + f (bn2c) + 1, if n ≥ 2

By induction, we can prove that f (n) = n − 1 (asymptotically
worse than the previous algorithm).

What can you conclude?
Power4 is also not efficient, because we make two recursive calls
for the same function f (bn2c)

49 / 55 Recursive Algorithm



Redundancy (4): Fibonacci sequence

The Fibonacci sequence is defined as follows.

F (n) =


1, n = 1

1, n = 2

Fn−1 + Fn−2, n ≥ 3

Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, . . .

Build an algorithm to compute the Fibonacci sequence!

With naive algorithm (brute force), we can reach complexity
O(n). How?

By looping (iterative method); we add the number one by
one.

Create a recursive algorithm!

50 / 55 Recursive Algorithm



Redundancy (4): Fibonacci sequence

The Fibonacci sequence is defined as follows.

F (n) =


1, n = 1

1, n = 2

Fn−1 + Fn−2, n ≥ 3

Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, . . .

Build an algorithm to compute the Fibonacci sequence!

With naive algorithm (brute force), we can reach complexity
O(n). How?

By looping (iterative method); we add the number one by
one.

Create a recursive algorithm!

50 / 55 Recursive Algorithm



Redundancy (4): Fibonacci sequence

The Fibonacci sequence is defined as follows.

F (n) =


1, n = 1

1, n = 2

Fn−1 + Fn−2, n ≥ 3

Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, . . .

Build an algorithm to compute the Fibonacci sequence!

With naive algorithm (brute force), we can reach complexity
O(n). How?

By looping (iterative method); we add the number one by
one.

Create a recursive algorithm!

50 / 55 Recursive Algorithm



Redundancy (4): Fibonacci sequence

The Fibonacci sequence is defined as follows.

F (n) =


1, n = 1

1, n = 2

Fn−1 + Fn−2, n ≥ 3

Fibonacci sequence: 1, 2, 3, 5, 8, 13, 21, . . .

Build an algorithm to compute the Fibonacci sequence!

With naive algorithm (brute force), we can reach complexity
O(n). How?

By looping (iterative method); we add the number one by
one.

Create a recursive algorithm!

50 / 55 Recursive Algorithm



Redundancy (5): Fibonacci sequence

Algorithm 16 Fibonacci sequence

1: procedure Fib(n)
2: if n ≤ 2 then return 1
3: end if
4: return (Fib(n − 1) + Fib(n − 2))
5: end procedure

This program makes recursive calls with a great deal of overlapping
computations, causing a huge inefficiency.

Complexity:

T (n) =


0, n = 1

0, n = 2

T (n − 1) + T (n − 2) + 1, n ≥ 3

Prove that: the explicit function: T (n) ≥ (1.618)n−2.

51 / 55 Recursive Algorithm



Redundancy (5): Fibonacci sequence

Algorithm 17 Fibonacci sequence

1: procedure Fib(n)
2: if n ≤ 2 then return 1
3: end if
4: return (Fib(n − 1) + Fib(n − 2))
5: end procedure

This program makes recursive calls with a great deal of overlapping
computations, causing a huge inefficiency.

Complexity:

T (n) =


0, n = 1

0, n = 2

T (n − 1) + T (n − 2) + 1, n ≥ 3

Prove that: the explicit function: T (n) ≥ (1.618)n−2.

51 / 55 Recursive Algorithm



Redundancy (5): Fibonacci sequence

Algorithm 18 Fibonacci sequence

1: procedure Fib(n)
2: if n ≤ 2 then return 1
3: end if
4: return (Fib(n − 1) + Fib(n − 2))
5: end procedure

This program makes recursive calls with a great deal of overlapping
computations, causing a huge inefficiency.

Complexity:

T (n) =


0, n = 1

0, n = 2

T (n − 1) + T (n − 2) + 1, n ≥ 3

Prove that: the explicit function: T (n) ≥ (1.618)n−2.
51 / 55 Recursive Algorithm



Advantages and drawbacks of recursive algorithm (1)

Advantages

Recursion adds clarity and reduces the time needed to write
and debug code (since it reduce the length of code).

To solve such problems which are naturally recursive such as
tower of Hanoi.

Recursion can reduce time complexity (sometimes
counter-intuitive).

Reduce unnecessary calling of function.

Extremely useful when applying the same solution.

52 / 55 Recursive Algorithm



Advantages and drawbacks of recursive algorithm (2)

Drawbacks

Recursive functions are generally slower than non-recursive
function.

It may require a lot of memory space to hold intermediate
results on the system stacks.

Hard to analyze or understand the code.

It is not more efficient in terms of space and time complexity
(can be slow).

The computer may run out of memory if the recursive calls
are not properly checked.

53 / 55 Recursive Algorithm



Sum up...

54 / 55 Recursive Algorithm



What have we learned today?

1 Reviewing brute force approach

2 Understanding the principal of recursive approach

3 Some examples of recursive algorithms

4 Recurrence equation to analyze time complexity

5 Redundancy in recursion: be careful when writing the
pseudocode

6 Binary search algorithm

55 / 55 Recursive Algorithm


