
04 - Brute Force Algorithm (part 2)

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 28 Feb - 4 March 2022

1 / 29 Brute Force Algorithm



Table of contents

Q and A (oral quiz)

Selection sort

Bubble sort

Insertion sort

Proving correctness using ’loop invariant’

2 / 29 Brute Force Algorithm



Q n A

1 Why is brute-force still used?

2 Explain the assignment problem!

3 Explain the partition problem!

4 Explain the magic square problem!

5 How heuristic technique can help in improving the efficiency
of brute-force technique to solve the magic square problem?

3 / 29 Brute Force Algorithm



Q n A

1 Why is brute-force still used?

2 Explain the assignment problem!

3 Explain the partition problem!

4 Explain the magic square problem!

5 How heuristic technique can help in improving the efficiency
of brute-force technique to solve the magic square problem?

3 / 29 Brute Force Algorithm



Q n A

1 Why is brute-force still used?

2 Explain the assignment problem!

3 Explain the partition problem!

4 Explain the magic square problem!

5 How heuristic technique can help in improving the efficiency
of brute-force technique to solve the magic square problem?

3 / 29 Brute Force Algorithm



Q n A

1 Why is brute-force still used?

2 Explain the assignment problem!

3 Explain the partition problem!

4 Explain the magic square problem!

5 How heuristic technique can help in improving the efficiency
of brute-force technique to solve the magic square problem?

3 / 29 Brute Force Algorithm



Q n A

1 Why is brute-force still used?

2 Explain the assignment problem!

3 Explain the partition problem!

4 Explain the magic square problem!

5 How heuristic technique can help in improving the efficiency
of brute-force technique to solve the magic square problem?

3 / 29 Brute Force Algorithm



Selection Sort

4 / 29 Brute Force Algorithm



Selection Sort (1): Algorithm

Problem: Given an array of n ordorable elements.
Sort the array and output the sorted array in non-decreasing order.

1 Find the largest item x in the range of [0..n − 1]

2 Swap x with the (n − 1)th item

3 Reduce n by 1 and go to Step 1

5 / 29 Brute Force Algorithm



Selection Sort (2)

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

37 is the largest, swap it with 
the last element, i.e. 13. 

How to find the largest?

X

X

X

Unsorted item

Largest item for the 
current iteration

Sorted item

6 / 29 Brute Force Algorithm



Selection Sort (3): Pseudocode

Algorithm 1 Selection sort

1: procedure SelectionSort(A[0..n − 1]: ordorable array)
2: for i = n − 1 downto 1 do
3: maxIdx = i . We’ll find the correct elmt for position i

4: for j = 0 to i − 1 do
5: if a[j ] >= a[maxIdx] then
6: maxIdx = j . Iteratively choose a larger elmt for position i

7: end if
8: end for
9: swap(a[i ], a[maxIdx]) . the correct elmt at position i is found at index maxIdx

10: end for
11: end procedure

7 / 29 Brute Force Algorithm



Selection Sort (4): Algorithm (by minimum)

What is the difference with the following selection-sort algorithm?

Figure: Selection sort algorithm in the book of Anany Levitin

8 / 29 Brute Force Algorithm



Selection Sort (5): Complexity analysis

Number of executions

n-1

n-1

(n-1) + (n-2) + ... + 1
= n(n-1) / 2

n-1

Complexity: O(n2)

9 / 29 Brute Force Algorithm



Bubble Sort

10 / 29 Brute Force Algorithm



Bubble Sort (1): Algorithm

Idea: Given an array of n items

1 Compare pair of adjacent items

2 Swap if the items are out of order
3 Repeat until the end of array

The largest item will be at the last position

4 Reduce n by 1 and go to Step 1

11 / 29 Brute Force Algorithm



Bubble Sort (2): Example

29 10 14 37 13

10 29 14 37 13

10 14 29 37 13

10 14 29 37 13

10 14 29 13 37

10 14 29 13 37

10 14 29 13 37

10 14 29 13 37

10 14 13 29 37

At the end of Pass 1, the largest 
item 37 is at the last position

At the end of Pass 2, the 
second-largest item 29 is at 
the second last position

(a) Pass 1 (b) Pass 2

12 / 29 Brute Force Algorithm



Bubble Sort (3)

Does the following algorithm also define bubble-sort algorithm?
Explain!

source: book of Levitin

13 / 29 Brute Force Algorithm



Bubble Sort (4): Pseudocode

Algorithm 2 Bubble sort

1: procedure BubbleSort(A[0..n − 1])
2: for i = n − 1 downto 1 do
3: for j = 1 to i do
4: if a[j − 1] > a[j ] then . Compare adjacent pairs of elements

5: swap(a[j ], a[j − 1]) . Swap if the elements are not in correct order

6: end if
7: end for
8: end for
9: end procedure

14 / 29 Brute Force Algorithm



Bubble Sort (5): Complexity analysis

one iteration of the inner loop (test and swap) requires time
bounded by a constant c

Two nested loops

Outer loop: exactly n iterations
Inner loop:

When i = 0, (n − 1) iterations
When i = 1, (n − 2) iterations
· · ·
When i = n − 1, 0 iterations

Total number of iterations: 0 + 1 + · · ·+ (n − 1) = n(n−1)
2

Total execution time: c · n(n−1)
2 = O(n2)

15 / 29 Brute Force Algorithm



Bubble Sort (6): Algorithm (version 2)

Algorithm 3 Bubble sort version 2

1: procedure BubbleSort2(A[1..n])
2: for i = n − 1 downto 1 do
3: sorted = True
4: for j = 1 to i do
5: if a[j − 1] > a[j ] then
6: swap(a[j ], a[j − 1])
7: sorted = False
8: end if
9: end for

10: if (sorted) then
11: return
12: end if
13: end for
14: end procedure

16 / 29 Brute Force Algorithm



Bubble Sort (7): Complexity analysis (version 2)

Worst-case

Input is in descending order
Running time: O(n2)

Best-case

Input is already in ascending order
The algorithm return after a single outer iteration
Running time: O(n)

17 / 29 Brute Force Algorithm



Insertion Sort

18 / 29 Brute Force Algorithm



Insertion sort (1): Algorithm

To sort an array A[0..n − 1] of size n in ascending order:

1 Iterate from A[0] to A[n − 1] over the array.

2 Compare the current element (named as ’key’) to its
predecessor.

3 If the key element is smaller than its predecessor, compare it
to the elements before. Move the greater elements one
position up to make space for the swapped element.

19 / 29 Brute Force Algorithm



Insertion sort (2): Example

Remark. We skipped the discussion of this part during the lecture.
Please read it carefully yourself!

source: https://www.geeksforgeeks.org/insertion-sort

20 / 29 Brute Force Algorithm

https://www.geeksforgeeks.org/insertion-sort


Insertion sort (3): Pseudocode

Algorithm 4 Insertion sort

1: procedure InsertionSort(A[0..n − 1]: ordorable array)
2: i ← 1
3: while i < n do . We’ll find the correct position for A[1], A[2], . . . , A[n − 1]

4: key ← A[i ] . ’key’ is the current element that will be inserted

5: j ← i − 1 . Using index j , we’ll find the correct position for A[i ]

6: while j ≥ 0 and A[j ] > key do
7: A[j + 1]← A[j ] . A[j] is shifted one position to the right (to index j + 1)

8: j ← j − 1 . Decrement j (until the correct position is found)

9: end while
10: A[j + 1]← key . Once found, ’key’ is inserted in the correct position (at idx j + 1)

11: i ← i + 1 . Increment i to work on the next ’key’

12: end while
13: end procedure

21 / 29 Brute Force Algorithm



Insertion sort (4): Time complexity

Complexity: O(n2) (because there are two nested while loops, each
of O(n)-complexity)

Algorithm 5 Insertion sort

1: procedure InsertionSort(A[0..n − 1]: ordorable array)
2: i ← 1
3: while i < n do . ’while loop’ involves (n − 1) iterations

4: key ← A[i ]
5: j ← i − 1
6: while j ≥ 0 and A[j ] > key do . In the worst case: ∃ (n− 1) iterations

7: A[j + 1]← A[j ]
8: j ← j − 1
9: end while

10: A[j + 1]← key
11: i ← i + 1
12: end while
13: end procedure

22 / 29 Brute Force Algorithm



Proving correctness:
loop invariant

23 / 29 Brute Force Algorithm



Proving correctness through loop invariant

Recall the definition correct algorithm: one returns the correct
solution for every valid instance of a problem

A standard way to prove correctness: loop invariance property

The loop invariance property:

It is a key property of the data manipulated by the main loop
of an algorithm

The property must be defined and can help us understand why
the algorithm is correct
We must show that the property holds in the initial case, is
maintained each iteration, and that when the loop terminates
the property yields correctness

Determining this property in general can be difficult. But in
many algorithms, the property is often the key defining
feature of the algorithm.

24 / 29 Brute Force Algorithm



From loop invariance to correctness

Three main characteristics of loop invariant

1. Initialization: The loop invariance must be true prior to the first
iteration of the loop.

2. Maintenance: If the property holds prior to an iteration of the loop, it
must still hold after the iteration is complete.

3. Termination: When the loop terminates, the invariant provides a

useful property that helps demonstrate that the algorithm is correct.

To prove correctness, we must prove the above about the loop
invariance property

Characteristics (1) and (2) are similar to induction. When they
hold, the loop invariant is true prior to every iteration of the loop

Characteristic (3) is where it differs from induction and is the most
important piece. We are not showing that the loop invariant holds
ad infinitum, but rather that it results in a correct answer after a
finite number of steps

25 / 29 Brute Force Algorithm



Correctness of selection sort: Loop invariant (1)

Example of loop invariant (in SelectionSort)

Loop invariant. At the start of each iteration of the outermost loop:

The sublist A[0..i ] contains the remaining i + 1 elements. Our goal is to
put the correct element at position i .

The sublist A[i + 1..n − 1] consists of the n − 1− i largest elements of A
in the correct order.

26 / 29 Brute Force Algorithm



Correctness of selection sort: Loop invariant (2)

Essentially, the loop invariant says that at each step, the data set
can be divided into two parts:

The part from i to the left on
which the algorithm is still
working

The part to the right of i is a
sorted sublist from elements
in A

Sorted sublist, largerRemaining sublist

i

27 / 29 Brute Force Algorithm



Correctness of selection sort: Loop invariant (3)

What did we prove?

Recall that the sorting problem is to take a list of unordered
items and order them by value.

We showed that the SelectionSort algorithm will, at each
step, preserve the property that items to the right of the main
index are in sorted order and not less than any item to the
left.

If this property holds at initialization, is maintained each step,
and terminates properly, SelectionSort must be a correct
implementation of an algorithm for solving the sorting
problem.

28 / 29 Brute Force Algorithm



Correctness of BubbleSort and InsertionSort?

Exercises:

Does the ”loop-invariant” proof still work for the
selection-sort-algorithm given in the book of Levitin?

Prove the correctness of BubbleSort and Insertion
Sort!

Does the loop-invariance method work? Define the loop
invariant for each algorithm!

29 / 29 Brute Force Algorithm


