
03 - Brute Force Algorithm

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 21-25 February 2022

1 / 57 Brute Force Algorithm



Table of contents

Principal of brute force algorithm

Some examples of brute-force technique

1 Finding max/min of array
2 Sequential search
3 Computing power
4 Computing factorial
5 Square-matrix

multiplication
6 Prime-number test
7 Polynomial interpolation
8 Closest pair problem
9 Pattern matching

Characteristics of brute force algorithm

Exhaustive search (principal & examples)

1 The Traveling Salesman Problem
2 The 1/0 Knapsack Problem
3 Exhaustive search in cryptography

Exercises: Assignment problem; Partition problem; Magic square

Heuristic technique (principal & examples)

2 / 57 Brute Force Algorithm



3 / 57 Brute Force Algorithm



Part 1: Brute force algorithm (1)

Definition (Brute Force algorithm or Exhaustive Search)

It is a typical problem-solving technique that uses straightforward
approach.

The solution is uncovered by checking every possible answer one by
one, by determining whether the result satisfies the statement of a
problem or not.

The algorithm is usually based on:

problem statement;

definitions/concepts that are involved in the problem

Characteristics: simple, direct approach, obvious way
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Part 1: Brute force algorithm (2)

Example.

Given an integer n, to find all divisors of n, one could check
whether each integer i ∈ [1, n] can divide n.

Given a lock of 4-digit PIN, where the digits to be chosen
from 0-9. The brute force will be trying all possible
combinations one by one like 0001, 0002, 0003, 0004, and so
on until we get the right PIN (there are at most 10000 trials).
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1. Finding the max/min element of an array

Problem. Given an array of n integers (a1, a2, . . . , an). We want to
find the maximum of the array.

Brute-force approach: to find the max, compare each element
from a1 to an.

Algorithm 1 Finding maximum of an array of integers

1: procedure Max(A[1..n])
2: max ← a1
3: for i = 2 to n do
4: if ai > max then
5: max ← ai
6: end if
7: end for
8: end procedure

Complexity? O(n)
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2. Sequential search (1)

Problem. Given an array of integers (a1, a2, . . . , an). We want to
find an element x in the array. If x is found, the algorithm outputs
the index of the element in the array. Otherwise, it outputs −1.

Brute-force approach: compare each element in the array with x .
We are done if x is found or all elements are checked.
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2. Sequential search (2)

Algorithm 4 Finding an element in an array of integers

1: procedure SeqSearch(A[1..n], x)
2: i ← 1
3: while i < n and ai 6= x do
4: i ← i + 1
5: end while
6: if ai = x then
7: idx ← i
8: else
9: idx ← −1

10: end if
11: return idx
12: end procedure

Complexity? in the assignment!
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3. Powering (1)

Problem. Compute an (a > 0, n is a non-negative numbers).

Brute-force approach:

an = a× a× · · · × a n times

We multiply 1 with a n times.

Algorithm 5 Computing an

1: procedure Power(a, n)
2: result ← 1
3: for i = 1 to n do
4: result ← result * a
5: end for
6: return result
7: end procedure
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3. Powering (2)

Time complexity: O(n).
Can you explain why?

Is there a better algorithm for ”power”?

10 / 57 Brute Force Algorithm



4. Computing factorial (1)

Problem. Compute n! (n > 0, n is a non-negative integers).

Brute-force approach:

n! = 1× 2× · · · × n and 0! = 1

We multiply the integers 1, 2, until n

Algorithm 7 Computing n!

1: procedure Factorial(n)
2: result ← 1
3: if n <= 1 then return result
4: else
5: for i = 2 to n do
6: result ← result * i
7: end for
8: end if
9: return result

10: end procedure

Time complexity: O(n).
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4. Computing factorial (2)

Time complexity: O(n) (multiplying n numbers)
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5. Square matrix multiplication (1)

Problem. Given two square matrices, of size n × n.
Find a way to multiply the two matrices!

Figure: A square matrix

13 / 57 Brute Force Algorithm



5. Square matrix multiplication (2)

Let A = [aij ], B = [bij ] be n × n matrices, and C = A× B.

cij = ai1b1j + ai2b2j + · · ·+ ainbnj =
n∑

k=1

aikbkj

=×

Brute-force approach: compute each element of C one-by-one by
multiplying the corresponding row of A and column of B.
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5. Square matrix multiplication (3)

Algorithm 9 Square matrix multiplication

1: procedure MatrixMult(A,B)
2: for i ← 1 to n do
3: for j ← 1 to n do
4: C [i , j ]← 0
5: for k ← 1 to n do
6: C [i , j ]← C [i , j ] + A[i , k] ∗ B[k , j ]
7: end for
8: end for
9: end for

10: return C
11: end procedure
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5. Square matrix multiplication (4)

Time complexity: O(n3).
We look at the ”dominant operations” as follows:

Inside the inner-most loop: n3 multiplications, n3 additions,
and 3 assignments

Inside the second loop: n2 assignments
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6. Prime number test (1)

Problem. Given a positive integer n. Check if n is prime.

Remark. A number n is prime iff the only divisors of n are 1 and n.

1. Brute-force approach: divide n by 2, 3, . . . , n − 1. If none of
them divides n, then n is a prime number.
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6. Prime number test (2)

Algorithm 10 Prime number test

1: procedure IsPrime(n)
2: if n < 2 then
3: return False
4: else
5: isprime ← True; k ← 2
6: while isprime & (k ≤ n − 1) do
7: if n mod k == 0 then
8: isprime ← False
9: else

10: k ← k + 1
11: end if
12: end while
13: return isprime
14: end if
15: end procedure
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6. Prime number test (3)

Problem. Given a positive integer n. Check if n is prime.

Remark. A number n is prime iff the only divisors of n are 1 and n.

1. Brute-force approach: divide n by 2, 3, . . . , n − 1. If none of
them divides n, then n is a prime number.

2. Sieve of Eratosthenes: for a given upper limit n, iteratively
mark the multiples of primes as composite (i.e. not prime),
starting from 2. Once all multiples of 2 have been marked
composite, the muliples of next prime, i.e. 3 are marked composite.
This process continues until p ≤

√
n, where p is a prime number.

By this technique, to check that n is prime, we only need to check
if there is any prime number ≤

√
n that divides n.
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6. Prime number test (4)

Algorithm 11 Prime number test (sieve of Eratosthenes)

1: procedure IsPrime2(n)
2: if n < 2 then
3: return False
4: else
5: isprime ← True; k ← 2
6: while isprime & (k ≤

√
n) do

7: if n mod k == 0 then
8: isprime ← False
9: else

10: k ← k + 1
11: end if
12: end while
13: return isprime
14: end if
15: end procedure
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6. Prime number test (5)

Time complexity:

Brute-force: O(n)

Sieve-Erathosthenes brute-force: O(
√

n)
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6. Prime number test (5)

Time complexity:

Brute-force: O(n)

Sieve-Erathosthenes brute-force: O(
√

n)
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7. Polynomial interpolation (1)

Problem. Evaluate the following polynomial at x = t:

p(x) = anxn + an−1xn−1 + · · ·+ a1x + a0

Brute-force approach: each of xk is computed as in the
”powering algorithm”; then multiply xk with ak , and take the sum
with the other terms.
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7. Polynomial interpolation (2)

Algorithm 12 Polynomial interpolation

1: procedure Polynom(n,A[0..n], t)
2: p ← 0
3: for i ← n downto 0 do
4: power ← 1
5: for j ← 1 to i do
6: power ← power ∗ t
7: end for
8: p ← p + a[i ] ∗ power
9: end for

10: return p
11: end procedure

There are O(n(n−1)
2 ) +O(n + 1) operations.

Time complexity: O(n2).
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8. Closest pair problem (1)

Problem. Given n points in the 2 dimensional Eucledian space (i.e.
Cartesian coordinate system). Find two points with the shortest
distance.

The distance between two points p1(x1, y1) and p2 = (x2, y2) is
given by:

d =
√

(x1 − x2)2 + (y1 − y2)2

Brute-force approach:

1 Compute the distance between every pair of points

2 Take the pair with the minimum distance
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8. Closest pair problem (2)

Algorithm 14 Finding the closest points

1: procedure ClosestPoints(p1, p2, . . . , pn)
2: dmin ← 999999
3: for i ← 1 to n − 1 do
4: for j ← i + 1 to n do
5: d ←

√
(pi .x − pj .x)2 + (pi .y − pj .y)2

6: if d < dmin then
7: dmin ← d
8: A← pi

9: B ← pj

10: end if
11: end for
12: end for
13: return A and B
14: end procedure
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8. Closest pair problem (3)

Time complexity: O(n2)
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9. Pattern matching (1)

Problem. Given a string of length n and a pattern of length m with
m < n. Find the location of the first character of the pattern in
the string that matches with the pattern.

Example.

String: NOBODY NOTICED HIM

Pattern: NOT

Brute-force approach:

1 Start with the first character of the string.
2 Start from the first character of the pattern, check if the

pattern matches with some substring:

all characters match
there is a character that doesn’t match

3 If the pattern doesn’t match, we move to the right, and
repeat Step 2.
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9. Pattern matching (2)

Example 1.

Example 2.

10010101001011110101010001

001011

10010101001011110101010001 (Try it!)
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9. Pattern matching (3)

1: procedure PatternMatching(P,T )
2: i ← 0; found ← False
3: while (i ≤ n −m) & (not found) do
4: j ← 1
5: while (j ≤ m) and Pj = Ti+j do
6: j ← j + 1
7: end while
8: if j = m then found ← True
9: else i ← i + 1

10: end if
11: end while
12: if found then return i + 1
13: else return −1
14: end if
15: end procedure
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9. Pattern matching (4)

Time complexity

1 Worst case

In each matching trial, we match all characters of the pattern
with the character in the corresponding character of the string
→ m steps
This is done for all possible positions in the string →
n −m + 1 possibilities
The number of steps: m(n = m + 1) ∈ O(nm)

2 Best case

This happens when the pattern is found in the first m positions
of the string
In this case, we check all characters of the pattern
Complexity: O(m)
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Characteristic of brute force algorithm (1)

Strength of brute-force:

This is not a powerful algorithm, but almost all problems can
be solved using brute force algorithm.

Simple and easy to understand

Can be applied for many problems: searching, sorting, string
matching, matrix multiplication, etc.

It produces standard algorithms for computational tasks such
as multiplication/addition of n numbers, finding max/min in
an array.
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Characteristic of brute force algorithm (2)

Drawbacks of brute-force:

The algorithm is not ”smart”, because it needs many
computation and takes long time to proceed. For many
real-world problems, the number of natural candidates is
prohibitively large.

Brute force algorithm is suitable for small instance, because it
is simple and can be easily implemented.

Remark. This algorithm is often called as naive algorithm, and is
used to compare with the other powerful algorithm.
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Part 2: Exhaustive search

Exhaustive search is simply a brute-force approach to combinatorial
problems (permutation, combination, subsets, etc.).

Remark. Example of combinatorial problems are the Traveling
Salesman Problem, Knapsack problem, etc.; and non-combinatorial
problems are Powering problem, Square Matrix Multipication, etc.

Remark. In many references, exhaustive search is considered same
as brute force.

Read the book of Anany Levitin, look at Section 3.4 (page 143)!
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1. Traveling Salesman Problem (1) [page 142]

Problem. Given n cities and the distances between each pair of
cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city?

Remark. We may always assume that the given input graph is a

complete graph (i.e. every pair of vertices is joined by an edge). If as in

the figure above the graph is not complete (for example, there is no edge

between vertex 1 and 7), then we may assume that the edge (1, 7) exists,

but its weight is ∞.
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1. Traveling Salesman Problem (2)

Hamiltonian cycle is a cycle that visits each vertex of the graph
exactly once. The TSP problem is equivalent to finding the
Hamiltonian cycle of the minimum weight.

Exhaustive search algorithm for TSP

1 Enumerate all Hamiltonian cycles of an n-vertex complete graph.

2 Evaluate the weight of every Hamiltonian cycle that is found in step 1.

3 Choose the Hamiltonian cycle with the minimum weight.

Exercise. Apply the algorithm above to the following graph!

cd

a b

4 8

10

8

12

9

35 / 57 Brute Force Algorithm



1. Traveling Salesman Problem (3)

cd

a b

4 8

10

8

12

9

No. Traveling route Weight
1. a → b → c → d → a 10 + 8 + 12 + 9 = 39

2. a → b → d → c → a 10 + 8 + 12 + 4 = 34

3. a → c → b → d → a 4 + 8 + 8 + 9 = 29

4. a → c → d → b → a 4 + 12 + 8 + 10 = 34

5. a → d → b → c → a 9 + 8 + 8 + 4 = 29

6. a → d → c → b → a 9 + 12 + 8 + 10 = 39

The shortest route is given by:

a→ c → b → d → a, of weight 29

a→ d → b → c → a, of weight 29
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1. Traveling Salesman Problem (4)

Exhaustive search algorithm for TSP

1 Enumerate all Hamiltonian cycle of an n-vertex complete graph.

2 Evaluate the weight of every Hamiltonian cycle that is found in step 1.

3 Choose the Hamiltonian cycle with the minimum weight.

Discuss how to compute the complexity?
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Time complexity of exhaustive search of TSP

Up to shifting, the number of different Hamiltonian cycles on n

vertices is: (n−1)!
2 (use the ”cyclic permutation formula”

(https://www.wikiwand.com/en/Cyclic_permutation), and note that the solution set
can be grouped into pairs where one is the reflection of the other).

cd

a b10

8

12

9

cd

a b

4 8

10

12 cd

a b

4 8
89

So, to solve TSP with exhaustive search, then we have to
enumerate (n−1)!

2 Hamiltonian cycles, compute their weights, and
choose the cycle that has the minimum weight.

To compute the weight of a cycle, we need O(n)-time.

Hence, the complexity is: (n−1)!
2 · O(n) ∈ O(n · n!) (not powerful).

Exercise. Given n = 20, if the time to evaluate one Hamiltonian cycle is 1

second, how much time needed to get the min-weight Hamiltonian cycle!

≈ 1, 541, 911, 905, 814 years
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2. The 1/0 knapsack problem (1) [page 143]

Given n items and a knapsack of capacity K . Every object i has
weight wi and profit pi . Determine the way to select the objects to
the knapsack so that the profit is maximum. The total weight of
the objects can not exceed the knapsack’s capacity.

Remark. 1/0 knapsack means that an object can be included to
the knapsack (1) or not included (0).
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2. The 1/0 knapsack problem (2): algorithm

Exhaustive search for 1/0 knapsack problem:

1 Enumerate all subsets of a set on n elements

2 Evaluate the profit of every subset instep 1

3 Choose the subset that gives the maximum profit but whose
weight does not exceed the knapsack’s capacity
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2. The 1/0 knapsack problem (3): example

Given four objects and a knapsack of capacity K = 16. The
property of each object is summarized in the following table:

Object Weight Profit

1 2 20

2 5 30

3 10 50

4 5 10
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2. The 1/0 knapsack problem (4): example

Subset Weight Profit

{} 0 0

{1} 2 20

{2} 5 30

{3} 10 50

{4} 5 10

{1, 2} 7 50

{1, 3} 12 70

{1, 4} 7 30

Subset Weight Profit

{2, 3} 15 80

{2, 4} 10 40

{3, 4} 15 60

{1, 2, 3} 17 not feasible

{1, 2, 4} 12 60

{1, 3, 4} 17 not feasible

{2, 3, 4} 20 not feasible

{1, 2, 3, 4} 22 not feasible

The optimal solution is given by the subset {2, 3} with profit is 80.
So the solution of the problem is given by X = {0, 1, 1, 0} (the
objects 1 and 4 are not taken, and objects 2 and 3 are taken).

Remark. A solution candidate is ”not feasible”, because the total weight

exceeds the knapsack capacity.
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2. The 1/0 knapsack problem (5): time complexity analysis

Time complexity:

The number of subsets of a set of n elements is: 2n.

Time to compute the total weight of a subset is: O(n).

So, the complexity of exhaustive search for 1/0 knapsack
problem is: O(n · 2n) (exponential complexity).
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2. The 1/0 knapsack problem (6): mathematical
formulation

We can also express optimization problems mathematically.

Write the solution as X = {x1, x2, . . . , xn} where:

xi = 1, if the i th object is selected

xi = 0 otherwise

The mathematical formulation of the 1/0 knapsack problem:

Definition (math formulation of 1/0 knapsack)

Maximize F =
∑n

i=1 pixi

subject to
∑n

i=1 wixi ≤ K
and xi = 0 or xi = 1, for i = 1, 2, . . . , n

Maximize F : the optimization function

subject to ... : the constraints (i.e. limitation)
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Exhaustive search in cryptography

Exhaustive search is used in cryptography as a technique that is
used by an attacker to find a decryption key by trying all possible
keys, known as exhaustive key search attack or brute force attack.

Example

The length of encryption key in DES (Data Encryption Standard)
algorithm is 64 bits.

From that 64 bits, only 56 bits are used, while the other 8 bits
are used as parity checking.

The number of combination for the key is
256 = 72, 057, 594, 037, 927, 936

This means that if the time needed to try one combination is
1 second, then to try all combinations, it would take
2,284,931,317 years.
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Exercises: 1. Assignment problem (1) [page 145]

Given n staffs and n tasks. Everyone is assigned to a task. The
staff(si ) is assigned to the task(tj) with cost c(i , j). Design a brute
force algorithm to assign the tasks such that the total cost∑

c(i , j) is minimized. The instance of the problem is represented
in the following matrix.

Example.

Cost matrix:

C =


task 1 task 2 task 3 task 4

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4


staff a
staff b
staff c
staff d
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Exercises: 1. Assignment problem (1)

Remark. An instance of the assignment problem is completely
specified by its cost matrix.

Question. How do you view a solution in terms of this matrix?

The first few iterations of solving a small instance of the
assignment problem by exhaustive search.

C =


9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4


〈1, 2, 3, 4〉
〈1, 2, 4, 3〉
〈1, 3, 2, 4〉
〈1, 3, 4, 2〉
〈1, 4, 2, 3〉
〈1, 4, 3, 2〉

...

cost = 9 + 4 + 1 + 4 = 18
cost = 9 + 4 + 8 + 9 = 30
cost = 9 + 3 + 8 + 4 = 24
cost = 9 + 3 + 8 + 6 = 26
cost = 9 + 7 + 8 + 9 = 33
cost = 9 + 7 + 1 + 6 = 23

...

Remark. 〈k , l ,m, n〉 means the entries c1,k , c2,l , c3,m, c4,n.
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Exercises: 1. Assignment problem (2)

Complexity

The number of choices: n · (n − 1) · (n − 2) · · · · · 1
Complexity: O(n2)
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Exercises: 2. Partition problem (1)

Given n positive integers. Divide them into two disjoint sets such
that the sum of the two subsets are equal. Design an exhaustive
search algorithm for this problem.

Example. n = 6, and the integers are 3, 8, 4, 6, 1, 2. It can be
divided into {3, 8, 1} and {4, 6, 2}, where the sum of each of them
is 12.

Question. How do we obtain this solution?
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Exercises: 2. Partition problem (1)

Algorithm

Input: set S

Output: a subset A ⊆ S satisfying sum(A) = sum(S)
2

1 Enumerate all possible subsets of S ;

2 For every subset A ⊆ S , check whether sum(A) = sum(S)
2 ;

Time complexity: O(2n)
(because a set of n elements has 2n subsets).
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Exercises: 3. Magic square (part 1)

A magic square is an arrangement of n numbers from 1 to n2 in a
square of size n × n such that the sum of every column, row, and
diagonal are equal. Design an exhaustive search algorithm to build
a magic square of order n.

4 9 2

3 5 7

8 1 6
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Exercises: 3. Magic square (part 2)

Algorithm

Input: (1, 2, 3, . . . n2)

Output: a magic square of size n × n

1 Enumerate all possible square;

2 For each of them, check if it is a magic square (by checking
whether the sum of every row, column, and diagonal is equal).

Complexity: O(n!) because there are n! possible square
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Exercises: Writing in pseudocode

Task: Write the pseudocode for
those three exercises!
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Part 3: Heuristic technique (1)

To read:
https://www.wikiwand.com/en/Heuristic_(computer_science)

Heuristic is a technique designed for solving a problem more quickly
when classic methods are too slow or for finding an approximate
solution when classic methods fail to find any exact solution.

The objective of a heuristic is to produce a solution in a reasonable
time frame that is good enough for solving the problem.

Heuristic uses guessing, intuition, and common sense which cannot
be proved mathematically.

It doesn’t always give an optimal solution.

A good heuristic can extremely reduce the time to solve a problem
by eliminating unnecessary solution candidates.

No guarantee that heuristic can solve a problem, but it works many
times and often faster than exhaustive search.
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Part 3: Heuristic technique (2)

Heuristic technique can be used to reduce the number of possible
candidates of the problem’s solution.

Example

In anagram problem, for English we can use the rule that the
letters ”c” and ”h” often appear consecutively in English words.
So we can consider only the permutation of letters where ”ch”
appear together.

Example.

march → charm

chapter → patcher, repatch
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Part 3: Heuristic technique (3)

Example

To solve the magic square problem with exhaustive search, we have
to check 9! = 362, 880 possible solution, then check whether for
each of them, the sum of every column, row, and diagonal are
equal.

With the heuristic technique, for each of the solution, we can
check whether the first column has sum = 15. If yes, we check
the next column/row. Otherwise, we stop, and check the other
permutation.
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Part 3: Heuristic technique (4)

Trade-off: When to choose heuristic technique?

Optimality: When several solutions exist for a given problem,
does the heuristic guarantee that the best solution will be
found? Is it actually necessary to find the best solution?

Completeness: When several solutions exist for a given
problem, can the heuristic find them all? Do we actually need
all solutions? Many heuristics are only meant to find one
solution.

Accuracy and precision: Can the heuristic provide a
confidence interval for the purported solution? Is the error bar
on the solution unreasonably large?

Execution time: Is this the best known heuristic for solving
this type of problem?
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