02 - Computational Complexity Analysis

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 14-18 February 2022

Table of contents

- Review of gcd algorithms
- Computational complexity model
- Asymptotic notation and order of magnitude
- Big-O notation: asymptotic upper bound
 - Definition
 - Linear & polynomial functions
 - $\bullet\,$ Arithmetic operations in ${\cal O}$
 - Logarithmic function
 - Classification of algorithms
 - Determining asymptotic complexity
- Big-Omega notation
- Big-Theta notation
- Quiz

From last week...

Computing gcd:

- Input: two integers a and b
- Output: the greatest common divisor of m and n

Algorithm 1 Naive gcd algorithm of two integers

1: procedure GCD(a, b)

2:
$$r = 1$$

3:
$$x = \min(a, b)$$

4: **for** i = 1 to x **do**

5: **if** $a \mod i == 0$ **and** $b \mod i == 0$ **then** r = i

- 6: end if
- 7: end for
- 8: end procedure

Complexity? homework!

Example

Using the Euclidean algorithm, find the gcd of 210 and 45.

Solution:

 $210 = 4 \cdot 45 + 30$ $45 = 1 \cdot 30 + 15$ $30 = 2 \cdot 15 + 0$

So gcd(210, 45) = 15

• • = • • = •

Algorithm 2 Euclidean algorithm

- 1: procedure EUCLIDGCD(a, b)
- 2: while $b \neq 0$ do
- 3: $r = a \mod b$
- 4: a = b
- 5: b = r
- 6: end while
- 7: return a
- 8: end procedure

Why does it terminate? Complexity? homework!

A B M A B M

Can you recall what is complexity of an algorithm, and why should we study it?

A part of *algorithm analysis* is computing the *computational complexity* of an algorithm.

The computational complexity or simply complexity of an algorithm is the amount of resources (*time* and *memory*) required to run it.

- Time efficiency: how fast an algorithm is executed
- Space efficiency: how much memory needed to execute an algorithm

How do we compute the complexity of an algorithm?

Example

Let a supercomputer executes an algorithm A, and a PC executes an algorithm B. Both computers have to sort an array of 1 million elements. The supercomputer can execute 100 million instructions in one second, while the PC is only able to execute 1 million instructions in one second.

Algorithm A needs $2n^2$ instructions to sort *n* elements, and algorithm B needs $50n \log n$ instructions. Compute the amount of time to sort 1 million elements in each computer!

Solution:

Supercomputer: ^{2·(10⁶)² instructions}/_{10⁸ instructions / sec} = 20000 sec ≈ 5.56 hours
PC: ^{50·10⁶} log 10⁶ instructions</sup>/_{10⁶} instructions / sec</sub> ≈ 1000sec ≈ 16.67 minutes

Remark. So, the number of executions matters!

What affects computational complexity?

Time (and space) complexity depends on lots of things like *hardware*, *OS*, *processors*, *programming language* and *compiler*, etc. But we don't consider any of these factors when analyzing the algorithm.

Remarks:

- Our focus on this subject will be on time complexity.
- We assume that our machine uses only one processor (i.e. *generic one-processor*).
- Time complexity is computed based on the number of operations/instructions
- The running time of an algorithm increases (or remains constant in case of constant running time) as the input size (*n*) increases.

Algorithm 3 Average of an array of integers

- 1: procedure AVERAGE(A[1..n])
- 2: sum $\leftarrow 0$
- 3: **for** i = 1 to *n* **do**
- 4: $\operatorname{sum} \leftarrow \operatorname{sum} + A[i]$
- 5: end for
- 6: $avg \leftarrow sum/n$
- 7: end procedure

The number of operations:

- Assignment: lines 2, 4, 6; with 1 + n + 1 = n + 2 operations
- Summation: line 4, with *n* operations
- Division: line 6, with 1 operation

Complexity: T(n) = (n+2) + n = 2n+2 operations.

Three measurements of resource usage:

- Worst-case (T_{max}(n)): it measures the resources (e.g. running time, memory) that an algorithm requires in the worst case i.e. most difficult case, given an input of arbitrary size n (usually denoted in asymptotic notation).
- **Best-case** (*T*_{min}(*n*)): describe an algorithm's behavior under optimal conditions.
- Average-case (*T*_{avg}(*n*)): the amount of computational time used by the algorithm, averaged over all possible inputs.

- The running time of an algorithm is measured as a *function of the size of its input*.
- Rate of growth of the running time measures how fast a function grows with the input size. Asymptotically means the function matters *only for large values of n*.
- The order of magnitude function describes the part of the function that increases the fastest as the value of *n* increases.

Asymptotic notation and order of magnitude (2)

Example

Suppose that an algorithm, running on an input of size *n*, takes $6n^2 + 100n + 300$.

We only keep the most significant term. We say that the function $6n^2$ has a higher order of magnitude than 100n + 300.

Worst-case complexity measures the resources an algorithm needs in the *worst-case*. It gives an <u>upper bound</u> on the resources required by the algorithm.

Why learn worst-case complexity?

- provides information about the maximum resource requirements
- naturally, it often happens in a system

Big-O ($\mathcal{O}(\cdot)$) notation: a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity.

Definition

 $g(n)\in \mathcal{O}(f(n)) ext{ if } \exists \ k>0 ext{ and } n_0 ext{ s.t. } g(n)\leq k\cdot f(n), \ \forall n\geq n_0.$

\mathcal{O} notation (3): Asymptotic upper-bound

Definition

 $g(n) \in \mathcal{O}(f(n)) \text{ if } \exists \ k > 0 \text{ and } n_0 \text{ s.t. } g(n) \leq k \cdot f(n), \ \forall n \geq n_0.$

• • = • • = •

э

\mathcal{O} notation (4): Linear and polynomial functions

Example

Show that g(n) = 5n + 3 is in $\mathcal{O}(n)$.

• • = • • = •

э

\mathcal{O} notation (4): Linear and polynomial functions

Example

Show that g(n) = 5n + 3 is in $\mathcal{O}(n)$.

Solution:

Note that $5n + 3 \le 5n + 3n = 8n$ for all $n \ge 1$. In this case, k = 8 and $n_0 = 1$. So, $g(n) \in \mathcal{O}(n)$.

• • = • • = •

\mathcal{O} notation (5): Linear and polynomial functions

Example

Show that $g(n) = 3n^2 - 5n + 6$ is in $\mathcal{O}(n^2)$.

• • = • • = •

э

Solution:

Note that $3n^2 - 5n + 6 \le 3n^2 + 0 + 6n^2 = 9n^2$ for all $n \ge 1$. In this case, k = 9 and $n_0 = 1$. So, $g(n) \in \mathcal{O}(n^2)$.

$\mathcal O$ notation (7): Arithmetic operations in $\mathcal O$

We denote by T(n) a function of time complexity.

Theorem (Big-O of a polynomial complexity)

If $T(n) = a_m n^m + a_{m-1} n^{m-1} + \cdots + a_1 n + a_0$ is a polynomial of order m, then $T(n) \in \mathcal{O}(n^m)$.

Theorem (Arithmetic operations on Big-O)

Let $T_1(n) \in \mathcal{O}(f(n))$ and $T_2(n) \in \mathcal{O}(g(n))$, then:

• $T_1(n) + T_2(n) \in \mathcal{O}(f(n)) + \mathcal{O}(g(n)) \in \mathcal{O}(\max(f(n), g(n)))$

- **3** $\mathcal{O}(cf(n)) \in \mathcal{O}(f(n))$, where c is a constant
- $f(n) \in \mathcal{O}(f(n))$

Proof: homework!

\mathcal{O} notation (8): Arithmetic operations in \mathcal{O}

Example (Arithmetic operations on Big-O)

• Let $T_1(n) \in \mathcal{O}(n)$ and $T_2(n) \in \mathcal{O}(n^2)$, then:

 $T_1(n) + T_2(n) \in \mathcal{O}(\max(n, n^2)) \in \mathcal{O}(n^2)$

2 Let $T_1(n) \in \mathcal{O}(n)$ and $T_2(n) \in \mathcal{O}(n^2)$, then:

$$T_1(n)T_2(n) \in \mathcal{O}(n \cdot n^2) = \mathcal{O}(n^3)$$

< ∃ >

\mathcal{O} notation (9): Logarithmic function

Review logarithms and exponents

$$\log_{b} a = c \Leftrightarrow b^{c} = a$$

- a > 0 is the power
- b > 0 is the base
- c is the exponent

Remark. If the base b = 2, then it is called binary logarithm. The base is often omitted.

In Computer Science, we usually use base-two logarithm complexity by default. Why?

In Computer Science, we usually use base-two logarithm complexity by default. Why?

- It is common to work with binary numbers or divide input data in half
- In Big-O notation (upper bound growth), all logarithms are *asymptotically equivalent* (the only difference is there multiplicative constant factor)
- So, we do not specify the base, and only write it as $\mathcal{O}(\log n)$

Some properties of logarithmic function

- $\log_b 1 = 0$ for any $b \ge 0$
- Change of bases: $\log_b a = \frac{\log_p a}{\log_p b}$
- Addition: $\log_p m + \log_p n = \log_p mn$
- Subtraction: $\log_p m \log_p n = \log_p \frac{m}{n}$
- Power: $\log_p a^x = x \cdot \log_p a$
- Inverse: $\log_p \frac{1}{a} = -\log_p a$
- Many others...

\mathcal{O} notation (12): Logarithmic function

Example

Show that $g(n) = (n+3)\log(n^2+1) + 2n^2$ is in $O(n^2)$

• • = • • = •

э

Solution:

Note that: $\log(n^{2} + 1) \leq \log(2n^{2}) = \log 2 + \log n^{2} \leq 2 \log n^{2} = 4 \log n.$ So, $\log(n^{2} + 1) \in \mathcal{O}(\log n).$ Since $n + 3 \in \mathcal{O}(n)$, then $(n + 3) \log(n^{2} + 1) \in \mathcal{O}(n) \cdot \mathcal{O}(\log n) \in \mathcal{O}(n \log n).$ Since $2n^{2} \in \mathcal{O}(n^{2})$, and $\max(n \log n, n^{2}) = n^{2}$, then $g(n) \in \mathcal{O}(n^{2}).$

\mathcal{O} notation (13): Classification of algorithms

The classification of algorithms based on the worst-time complexity

Complexity	Class		
$\mathcal{O}(1)$	constant		
$\mathcal{O}(\log n)$	logarithmic		
$\mathcal{O}(n)$	linear		
$\mathcal{O}(n \log n)$	quasilinear /linearithmic		
$\mathcal{O}(n^2)$	square		
$\mathcal{O}(n^3)$	cubic		
$\mathcal{O}(n^k), \ k \geq 2$	polynomial		
$\mathcal{O}(2^n)$	exponential		
$\mathcal{O}(n!)$	factorial		

 $\mathcal{O}(1) < \mathcal{O}(\log n) < \mathcal{O}(n) < \mathcal{O}(n \log n) < \mathcal{O}(n^2) < \mathcal{O}(n^3) < \cdots < \mathcal{O}(2^n) < \mathcal{O}(n!)$

exponential algorithms

- 4 同 ト 4 ヨ ト 4 ヨ ト

polynomial algorithms

\mathcal{O} notation (14): Classification of algorithms

\mathcal{O} notation (13): Classification of algorithms

- Assignment of values (comparison, arithmetic operations, read, write) needs O(1)
- Accessing an element of an array, or selecting a field from a record needs O(1)

Example

- read $(x) \rightarrow \mathcal{O}(1)$
- $x: x + a[k] \rightarrow \mathcal{O}(1)$
- $print(x) \rightarrow \mathcal{O}(1)$

・ 同 ト ・ ヨ ト ・ ヨ ト

\mathcal{O} notation (14): Determining asymptotic complexity

• If-Else condition: IF C THEN A1 ELSE A2 needs time: $T_C + \max(T_{O1}, T_{O2})$

Example

- 1: read(x)
- 2: **if** $x \mod 2 = 0$ **then**
- 3: x := x + 1
- 4: print("Even")
- 5: **else**
- 6: print("Odd")
- 7: end if

Asymptotic TC: $\mathcal{O}(1) + \mathcal{O}(1) + \max(\mathcal{O}(1) + \mathcal{O}(1), \mathcal{O}(1)) \in \mathcal{O}(1)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 \mathcal{O} notation (15): Determining asymptotic complexity

• For loop: the time complexity is the number of iterations multiplied with the time complexity of the *body loop* (i.e. *loop statements*)

Example (Single for loop)

- 1: for i = 1 to n do
- 2: sum:= sum + a[1]

3: end for

Asymptotic TC: $n \cdot O(1) = O(n)$

\mathcal{O} notation (16): Determining asymptotic complexity

Example (Two nested for loops with one instruction)

- 1: for i = 1 to n do
- 2: **for** j = 1 to *n* **do**
- 3: a[i,j] := i + j
- 4: end for
- 5: end for

Asymptotic TC: $n \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

\mathcal{O} notation (17): Determining asymptotic complexity

Example (Two nested for loops with two instructions)

1: for i = 1 to n do 2: for j = 1 to i do 3: a := a + 14: b := b - 15: end for 6: end for

The outer loop is executed *n* times, and the inner loop is executed *i* times for each *j*. The number of iterations: $1 + 2 + \cdots + n = \frac{n(n+1)}{2} \in \mathcal{O}(n^2)$.

The body loop needs $\mathcal{O}(1)$ -time.

Asymptotic time complexity: $O(n^2)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 \mathcal{O} notation (18): Determining asymptotic complexity

While loop: WHILE C DO A; and REPEAT A UNTIL C. Time complexity = # iterations × T_{body}

Example (Single loop with n-1 iterations)

- 1: i := 2
- 2: while $i \leq n$ do
- 3: sum := sum + a[i]
- 4: i := i + 1
- 5: end while

Asymptotic TC: $\mathcal{O}(1) + (n-1)(\mathcal{O}(1) + \mathcal{O}(1) + \mathcal{O}(1)) = \mathcal{O}(1) + \mathcal{O}(n-1) \in \mathcal{O}(n)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

\mathcal{O} notation (19): Determining asymptotic complexity

Example (Infinite loop)

- 1: x := 0
- 2: while *x* < 5 do
- 3: x := 1
- 4: x := x + 1
- 5: end while

In this situation, x will never be greater than 5, since at the start of the while loop, x is given the value of 1, thus, the loop will always end in 2 and the loop will never break.

Ω notation: Asymptotic lower-bound

We can also say that an algorithm takes *at least a certain amount of time*, without providing an upper bound.

Big-Omega $(\Omega(\cdot))$ notation

Definition

 $g(n) \in \Omega(f(n))$ if $\exists k > 0$ and n_0 s.t. g(n)

$$g(n) \geq k \cdot f(n), \quad \forall n \geq n_0.$$

Θ notation: Asymptotically tight-bound

Definition

$$g(n) \in \Theta(f(n)) \text{ if } \exists k_1, k_2 > 0 \text{ and } n_0 \text{ s.t.}$$

 $k_1 \cdot f_n \leq g(n) \leq k_2 \cdot f(n), \ \forall n \geq n_0.$

э

(*) * 문 * * 문 *

QUIZ

・ロト ・四ト ・ヨト ・ヨト

æ

Which kind of growth best characterizes each of these functions?

	Constant	Linear	Polynomial	Exponential
$(3/2)^n$				
1				
(3/2) n				
2 <i>n</i> ³				
2 ⁿ				
3 <i>n</i> ²				
1000				
3 <i>n</i>				

• = • •

Which kind of growth best characterizes each of these functions?

	Constant	Linear	Polynomial	Exponential
$(3/2)^n$				\checkmark
1	\checkmark			
(3/2) n		\checkmark		
2 <i>n</i> ³			\checkmark	
2 ⁿ				\checkmark
3 <i>n</i> ²			\checkmark	
1000	\checkmark			
3 <i>n</i>		\checkmark		

• = • •

Match each function with an equivalent function that satisfies $g(n) = \Theta(f(n))$.

g(n)	f(n)
<i>n</i> + 30	$n^2 + 3n$
$n^2 + 2n - 10$	n ⁴
n ³ * 3n	$\log_2 2x$
$\log_2 x$	3 <i>n</i> – 1

A B M A B M

Exc 2: Comparing function growth (2)

Recall that $g(n) \in \Theta(f(n))$ if $\exists k_1, k_2 > 0$ s.t. for all sufficiently large n, we have

$$k_1 \cdot f(n) \leq g(n) \leq k_2 \cdot f(n)$$

We drop the constants and lower order terms (i.e. only keep the most significant term).

g(n)	simplified	f(n)	simplified
<i>n</i> + 30	n	$n^2 + 3n$	n ²
$n^2 + 2n - 10$	n ²	n ⁴	n ⁴
n ³ * 3n	n ⁴	$\log_2 2x$	log x
log ₂ x	log x	3 <i>n</i> – 1	п

Two functions match if the corresponding simplified functions are equal.

For the functions $\log_2 n$ and $\log_8 n$, what is the asymptotic relationship between these functions?

- $\log_2 n$ is in $\mathcal{O}(\log_8 n)$
- $\log_2 n$ is in $\Omega(\log_8 n)$
- $\log_2 n$ is in $\Theta(\log_8 n)$

Both $\log_2 n$ and $\log_8 n$ are functions with logarithmic growth, with their base as the only difference.

Exc 3: Asymptotic notation (3)

• Is $\log_2 n$ in $\mathcal{O}(\log_8 n)$?

Recall that $\log_a n = \frac{\log_b n}{\log_b a}$. So, $\log_8 n = \frac{\log_2 n}{\log_2 8} = \frac{\log_2 n}{3} = \frac{1}{3} \cdot \log_2 n$. We can take k = 5, so that: $\log_2 n \le 5 \log_8 n$.

• Is $\log_2 n$ in $\Omega(\log_8 n)$?

Since $\log_8 n = \frac{1}{3} \cdot \log_2 n$, then $\log_2 n \ge \log_8 n$ for all $n \ge 1$. So, $\log_2 n \in \Omega(\log_8 n)$

(*) = (*) = (*)

Exc 3: Asymptotic notation (5)

• Is $\log_2 n$ in $\Theta(\log_8 n)$?

Clearly, $\log_8 n \le \log_2 n \le 5 \cdot \log_8 n$ for all n > 1. So, $\log_2 n \in \Theta(\log_8 n)$.

A B M A B M

э