
02 - Computational Complexity Analysis

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 14-18 February 2022

1 / 48 Computational Complexity Analysis



Table of contents

Review of gcd algorithms

Computational complexity model

Asymptotic notation and order of magnitude

Big-O notation: asymptotic upper bound

Definition
Linear & polynomial functions
Arithmetic operations in O
Logarithmic function
Classification of algorithms
Determining asymptotic complexity

Big-Omega notation

Big-Theta notation

Quiz

2 / 48 Computational Complexity Analysis



Euclidean algorithm to compute gcd (1)

From last week...

Computing gcd:

Input: two integers a and b

Output: the greatest common divisor of m and n

Algorithm 1 Naive gcd algorithm of two integers

1: procedure Gcd(a, b)
2: r = 1
3: x = min(a, b)
4: for i = 1 to x do
5: if a mod i == 0 and b mod i == 0 then r = i
6: end if
7: end for
8: end procedure

Complexity? homework!
3 / 48 Computational Complexity Analysis



Euclidean algorithm to compute gcd (2)

Example

Using the Euclidean algorithm, find the gcd of 210 and 45.

Solution:

210 = 4 · 45 + 30

45 = 1 · 30 + 15

30 = 2 · 15 + 0

So gcd(210, 45) = 15

4 / 48 Computational Complexity Analysis



Euclidean algorithm to compute gcd (3)

Algorithm 2 Euclidean algorithm

1: procedure EuclidGcd(a, b)
2: while b 6= 0 do
3: r = a mod b
4: a = b
5: b = r
6: end while
7: return a
8: end procedure

Why does it terminate?
Complexity? homework!

5 / 48 Computational Complexity Analysis



Computational complexity model (1)

Can you recall what is complexity of an algorithm,
and why should we study it?

6 / 48 Computational Complexity Analysis



Computational complexity model (2)

A part of algorithm analysis is computing the computational
complexity of an algorithm.

The computational complexity or simply complexity of an algorithm
is the amount of resources (time and memory) required to run it.

Time efficiency: how fast an algorithm is executed

Space efficiency: how much memory needed to execute an
algorithm

How do we compute the complexity of an algorithm?

7 / 48 Computational Complexity Analysis



Computational complexity model (3)

Example

Let a supercomputer executes an algorithm A, and a PC executes an algorithm
B. Both computers have to sort an array of 1 million elements. The
supercomputer can execute 100 million instructions in one second, while the
PC is only able to execute 1 million instructions in one second.

Algorithm A needs 2n2 instructions to sort n elements, and algorithm B needs
50n log n instructions. Compute the amount of time to sort 1 million elements
in each computer!

8 / 48 Computational Complexity Analysis



Computational complexity model (4)

Solution:

Supercomputer: 2·(106)2 instructions

108 instructions / sec
= 20000 sec ≈ 5.56 hours

PC: 50·106 log 106 instructions
106 instructions / sec

≈ 1000sec ≈ 16.67 minutes

Remark. So, the number of executions matters!

9 / 48 Computational Complexity Analysis



Computational complexity model (5)

What affects computational complexity?

Time (and space) complexity depends on lots of things like
hardware, OS, processors, programming language and compiler,
etc. But we don’t consider any of these factors when analyzing the
algorithm.

Remarks:

Our focus on this subject will be on time complexity.

We assume that our machine uses only one processor (i.e.
generic one-processor).

Time complexity is computed based on the number of
operations/instructions

The running time of an algorithm increases (or remains
constant in case of constant running time) as the input size
(n) increases.

10 / 48 Computational Complexity Analysis



Computational complexity model (6)

Algorithm 3 Average of an array of integers

1: procedure Average(A[1..n])
2: sum ← 0
3: for i = 1 to n do
4: sum ← sum + A[i ]
5: end for
6: avg ← sum/n
7: end procedure

The number of operations:

Assignment: lines 2, 4, 6; with 1 + n + 1 = n + 2 operations

Summation: line 4, with n operations

Division: line 6, with 1 operation

Complexity: T (n) = (n + 2) + n = 2n + 2 operations.

11 / 48 Computational Complexity Analysis



Computational complexity model (7)

Three measurements of resource usage:

Worst-case (Tmax(n)): it measures the resources (e.g.
running time, memory) that an algorithm requires in the worst
case i.e. most difficult case, given an input of arbitrary size n
(usually denoted in asymptotic notation).

Best-case (Tmin(n)): describe an algorithm’s behavior under
optimal conditions.

Average-case (Tavg(n)): the amount of computational time
used by the algorithm, averaged over all possible inputs.

12 / 48 Computational Complexity Analysis



Asymptotic notation and order of magnitude (1)

The running time of an algorithm is measured as a function of
the size of its input.

Rate of growth of the running time measures how fast a
function grows with the input size. Asymptotically means the
function matters only for large values of n.

The order of magnitude function describes the part of the
function that increases the fastest as the value of n increases.

13 / 48 Computational Complexity Analysis



Asymptotic notation and order of magnitude (2)

Example

Suppose that an algorithm, running on an input of size n, takes
6n2 + 100n + 300.

We only keep the most significant term. We say that the function
6n2 has a higher order of magnitude than 100n + 300.

14 / 48 Computational Complexity Analysis



O notation (1): Asymptotic upper-bound

Worst-case complexity measures the resources an algorithm needs
in the worst-case. It gives an upper bound on the resources
required by the algorithm.

Why learn worst-case complexity?

provides information about the maximum resource requirements

naturally, it often happens in a system

15 / 48 Computational Complexity Analysis



O notation (2): Asymptotic upper-bound

Big-O (O(·)) notation: a mathematical notation that describes the
limiting behavior of a function when the argument tends towards a
particular value or infinity.

Definition

g(n) ∈ O(f (n)) if ∃ k > 0 and n0 s.t. g(n) ≤ k · f (n), ∀n ≥ n0.

16 / 48 Computational Complexity Analysis



O notation (3): Asymptotic upper-bound

Definition

g(n) ∈ O(f (n)) if ∃ k > 0 and n0 s.t. g(n) ≤ k · f (n), ∀n ≥ n0.

17 / 48 Computational Complexity Analysis



O notation (4): Linear and polynomial functions

Example

Show that g(n) = 5n + 3 is in O(n).

Solution:

Note that 5n + 3 ≤ 5n + 3n = 8n for all n ≥ 1. In this case, k = 8
and n0 = 1. So, g(n) ∈ O(n).

18 / 48 Computational Complexity Analysis



O notation (4): Linear and polynomial functions

Example

Show that g(n) = 5n + 3 is in O(n).

Solution:

Note that 5n + 3 ≤ 5n + 3n = 8n for all n ≥ 1. In this case, k = 8
and n0 = 1. So, g(n) ∈ O(n).

18 / 48 Computational Complexity Analysis



O notation (5): Linear and polynomial functions

Example

Show that g(n) = 3n2 − 5n + 6 is in O(n2).

19 / 48 Computational Complexity Analysis



O notation (6): Linear and polynomial functions

Solution:

Note that 3n2 − 5n + 6 ≤ 3n2 + 0 + 6n2 = 9n2 for all n ≥ 1. In
this case, k = 9 and n0 = 1. So, g(n) ∈ O(n2).

20 / 48 Computational Complexity Analysis



O notation (7): Arithmetic operations in O

We denote by T (n) a function of time complexity.

Theorem (Big-O of a polynomial complexity)

If T (n) = amn
m + am−1n

m−1 + · · ·+ a1n + a0 is a polynomial of
order m, then T (n) ∈ O(nm).

Theorem (Arithmetic operations on Big-O)

Let T1(n) ∈ O(f (n)) and T2(n) ∈ O(g(n)), then:

1 T1(n) + T2(n) ∈ O(f (n)) +O(g(n)) ∈ O(max(f (n), g(n)))

2 T1(n)T2(n) ∈ O(f (n))O(g(n)) ∈ O(f (n)g(n))

3 O(cf (n)) ∈ O(f (n)), where c is a constant

4 f (n) ∈ O(f (n))

Proof: homework!

21 / 48 Computational Complexity Analysis



O notation (8): Arithmetic operations in O

Example (Arithmetic operations on Big-O)

1 Let T1(n) ∈ O(n) and T2(n) ∈ O(n2), then:

T1(n) + T2(n) ∈ O(max(n, n2)) ∈ O(n2)

2 Let T1(n) ∈ O(n) and T2(n) ∈ O(n2), then:

T1(n)T2(n) ∈ O(n · n2) = O(n3)

3 O(5n2) ∈ O(n2)

4 n2 ∈ O(n2)

22 / 48 Computational Complexity Analysis



O notation (9): Logarithmic function

Review logarithms and exponents

logb a = c ⇔ bc = a

a > 0 is the power

b > 0 is the base

c is the exponent

Remark. If the base b = 2, then it is called binary logarithm. The
base is often omitted.

23 / 48 Computational Complexity Analysis



O notation (10): Logarithmic function

In Computer Science, we usually use base-two logarithm
complexity by default. Why?

It is common to work with binary numbers or divide input
data in half

In Big-O notation (upper bound growth), all logarithms are
asymptotically equivalent (the only difference is there
multiplicative constant factor)

So, we do not specify the base, and only write it as O(log n)

24 / 48 Computational Complexity Analysis



O notation (10): Logarithmic function

In Computer Science, we usually use base-two logarithm
complexity by default. Why?

It is common to work with binary numbers or divide input
data in half

In Big-O notation (upper bound growth), all logarithms are
asymptotically equivalent (the only difference is there
multiplicative constant factor)

So, we do not specify the base, and only write it as O(log n)

24 / 48 Computational Complexity Analysis



O notation (11): Logarithmic function

Some properties of logarithmic function

logb 1 = 0 for any b ≥ 0

Change of bases: logb a =
logp a

logp b

Addition: logp m + logp n = logp mn

Subtraction: logp m − logp n = logp
m
n

Power: logp a
x = x · logp a

Inverse: logp
1
a = −logpa

Many others...

25 / 48 Computational Complexity Analysis



O notation (12): Logarithmic function

Example

Show that g(n) = (n + 3) log(n2 + 1) + 2n2 is in O(n2)

26 / 48 Computational Complexity Analysis



O notation (13): Logarithmic function

Solution:

Note that:
log(n2 + 1) ≤ log(2n2) = log 2 + log n2 ≤ 2 log n2 = 4 log n.
So, log(n2 + 1) ∈ O(log n).

Since n + 3 ∈ O(n), then
(n + 3) log(n2 + 1) ∈ O(n) · O(log n) ∈ O(n log n).

Since 2n2 ∈ O(n2), and max(n log n, n2) = n2, then g(n) ∈ O(n2).

27 / 48 Computational Complexity Analysis



O notation (13): Classification of algorithms

The classification of algorithms based on the worst-time complexity

Complexity Class
O(1) constant

O(log n) logarithmic

O(n) linear

O(n log n) quasilinear /linearithmic

O(n2) square

O(n3) cubic

O(nk), k ≥ 2 polynomial

O(2n) exponential

O(n!) factorial

O(1) < O(log n) < O(n) < O(n log n) < O(n2) < O(n3) < · · · <︸ ︷︷ ︸
polynomial algorithms

O(2n) < O(n!)︸ ︷︷ ︸
exponential algorithms

28 / 48 Computational Complexity Analysis



O notation (14): Classification of algorithms

29 / 48 Computational Complexity Analysis



O notation (13): Classification of algorithms

1 Assignment of values (comparison, arithmetic operations,
read, write) needs O(1)

2 Accessing an element of an array, or selecting a field from a
record needs O(1)

Example

read(x) → O(1)

x : x + a[k] → O(1)

print(x) → O(1)

30 / 48 Computational Complexity Analysis



O notation (14): Determining asymptotic complexity

3 If-Else condition: If C then A1 else A2 needs time:
TC + max(TO1,TO2)

Example

1: read(x)
2: if x mod 2 = 0 then
3: x := x + 1
4: print(”Even”)
5: else
6: print(”Odd”)
7: end if

Asymptotic TC: O(1) +O(1) + max(O(1) +O(1),O(1)) ∈ O(1)

31 / 48 Computational Complexity Analysis



O notation (15): Determining asymptotic complexity

4 For loop: the time complexity is the number of iterations
multiplied with the time complexity of the body loop (i.e. loop
statements)

Example (Single for loop)

1: for i = 1 to n do
2: sum:= sum + a[1]
3: end for

Asymptotic TC: n · O(1) = O(n)

32 / 48 Computational Complexity Analysis



O notation (16): Determining asymptotic complexity

Example (Two nested for loops with one instruction)

1: for i = 1 to n do
2: for j = 1 to n do
3: a[i , j ] := i + j
4: end for
5: end for

Asymptotic TC: n · O(n) = O(n2)

33 / 48 Computational Complexity Analysis



O notation (17): Determining asymptotic complexity

Example (Two nested for loops with two instructions)

1: for i = 1 to n do
2: for j = 1 to i do
3: a := a + 1
4: b := b − 1
5: end for
6: end for

The outer loop is executed n times, and the inner loop is executed i times for
each j . The number of iterations: 1 + 2 + · · ·+ n = n(n+1)

2
∈ O(n2).

The body loop needs O(1)-time.

Asymptotic time complexity: O(n2)

34 / 48 Computational Complexity Analysis



O notation (18): Determining asymptotic complexity

5 While loop: while C do A; and repeat A until C.
Time complexity = # iterations × Tbody

Example (Single loop with n − 1 iterations)

1: i := 2
2: while i ≤ n do
3: sum:= sum + a[i ]
4: i := i + 1
5: end while

Asymptotic TC:
O(1) + (n − 1)(O(1) +O(1) +O(1)) = O(1) +O(n − 1) ∈ O(n)

35 / 48 Computational Complexity Analysis



O notation (19): Determining asymptotic complexity

Example (Infinite loop)

1: x := 0
2: while x < 5 do
3: x := 1
4: x := x + 1
5: end while

In this situation, x will never be greater than 5, since at the start
of the while loop, x is given the value of 1, thus, the loop will
always end in 2 and the loop will never break.

36 / 48 Computational Complexity Analysis



Ω notation: Asymptotic lower-bound

We can also say that an algorithm takes at least a certain amount
of time, without providing an upper bound.

Big-Omega (Ω(·)) notation

Definition

g(n) ∈ Ω(f (n)) if ∃ k > 0 and n0 s.t. g(n) ≥ k · f (n), ∀n ≥ n0.

37 / 48 Computational Complexity Analysis



Θ notation: Asymptotically tight-bound

Definition

g(n) ∈ Θ(f (n)) if ∃ k1, k2 > 0 and n0 s.t.
k1 · fn ≤ g(n) ≤ k2 · f (n), ∀n ≥ n0.

38 / 48 Computational Complexity Analysis



QUIZ

39 / 48 Computational Complexity Analysis



Exc 1: Growth of function in O (1)

Which kind of growth best characterizes each of these functions?

Constant Linear Polynomial Exponential
(3/2)n

1

(3/2) n

2n3

2n

3n2

1000

3n

40 / 48 Computational Complexity Analysis



Exc 1: Growth of function in O (2)

Which kind of growth best characterizes each of these functions?

Constant Linear Polynomial Exponential
(3/2)n X

1 X
(3/2) n X

2n3 X
2n X

3n2 X
1000 X

3n X

41 / 48 Computational Complexity Analysis



Exc 2: Comparing function growth (1)

Match each function with an equivalent function that satisfies
g(n) = Θ(f (n)).

g(n) f (n)

n + 30 n2 + 3n

n2 + 2n − 10 n4

n3 ∗ 3n log2 2x

log2 x 3n − 1

42 / 48 Computational Complexity Analysis



Exc 2: Comparing function growth (2)

Recall that g(n) ∈ Θ(f (n)) if ∃k1, k2 > 0 s.t. for all sufficiently
large n, we have

k1 · f (n) ≤ g(n) ≤ k2 · f (n)

We drop the constants and lower order terms (i.e. only keep the
most significant term).

g(n) simplified f (n) simplified

n + 30 n n2 + 3n n2

n2 + 2n − 10 n2 n4 n4

n3 ∗ 3n n4 log2 2x log x

log2 x log x 3n − 1 n

Two functions match if the corresponding simplified functions are
equal.

43 / 48 Computational Complexity Analysis



Exc 3: Asymptotic notation (1)

For the functions log2 n and log8 n, what is the asymptotic
relationship between these functions?

log2 n is in O(log8 n)

log2 n is in Ω(log8 n)

log2 n is in Θ(log8 n)

44 / 48 Computational Complexity Analysis



Exc 3: Asymptotic notation (2)

Both log2 n and log8 n are functions with logarithmic growth, with
their base as the only difference.

45 / 48 Computational Complexity Analysis



Exc 3: Asymptotic notation (3)

Is log2 n in O(log8 n)?

Recall that loga n = logb n
logb a

.

So, log8 n = log2 n
log2 8

= log2 n
3 = 1

3 · log2 n.

We can take k = 5, so that: log2 n ≤ 5 log8 n.

46 / 48 Computational Complexity Analysis



Exc 3: Asymptotic notation (4)

Is log2 n in Ω(log8 n)?

Since log8 n = 1
3 · log2 n, then log2 n ≥ log8 n for all n ≥ 1.

So, log2 n ∈ Ω(log8 n)

47 / 48 Computational Complexity Analysis



Exc 3: Asymptotic notation (5)

Is log2 n in Θ(log8 n)?

Clearly, log8 n ≤ log2 n ≤ 5 · log8 n for all n > 1.

So, log2 n ∈ Θ(log8 n).

48 / 48 Computational Complexity Analysis


