
01 - Introduction to Design and Analysis of
Algorithms

[KOMS119602] & [KOMS120403]

Design and Analysis of Algorithm (2021/2022)

Dewi Sintiari

Prodi S1 Ilmu Komputer
Universitas Pendidikan Ganesha

Week 7-11 February 2022
1 / 10 Intro to DAA

Practical matters

Credit: 3 SKS

Lecturer: Dewi Sintiari

email: nld.sintiari@gmail.com

Evaluation:
Presence (≥ 75%) + attitude: 20%
Quiz / Take-home assignments (theoretical & programming):
40%
Midterm exam (written): 20%
Final exam (written): 20%
Bonus: writing an article, writing in wikipedia?
Grade = 20% Presence + 40% Assignments + 20% Midterm
+ 20% Final + Bonus

2 / 10 Intro to DAA

What are algorithms and why do we need them?

3 / 10 Intro to DAA

What are algorithms and why do we need them?

A simple algorithm:

Recipe of Indomie gorengRecipe of Indomie goreng

.......................

.......................

.......................

.......................

.......................

.......................

.......................

1.
2.
3.
4.
5.
6.
7.

Steps

Ingredients
Result

3 / 10 Intro to DAA

What are algorithms and why do we need them?

A simple algorithm:

.......................

.......................

.......................

.......................

.......................

.......................

1.
2.
3.
4.
5.
6.

Steps

Recipe of Teh celupRecipe of Teh celup

Ingredients
Result

3 / 10 Intro to DAA

What are algorithms and why do we need them?

Audio & video compression algorithms
allow transmitting live video across internet

Route findings algorithms are used to
find a route between two cities

Optimization and scheduling algorithms are used
to arrange the schedule of airlines in the world

3 / 10 Intro to DAA

What are algorithms and why do we need them?

Algorithm = step-by-step procedure

Definition

An algorithm is a finite sequence of well-defined instructions,
typically used to solve a class of specific problems or to perform a
computation.

In CS, an algorithm gives the computer a specific set of
instructions, which allows the computer to do everything.

Computer programs = algorithms written in programming
languages that the computer can understand.

An algorithm is written in pseudocode.

Algorithmic thinking is the ability to define clear steps to solve a
problem. This allows us to break down problems and conceptualize
solutions.

3 / 10 Intro to DAA

Characteristics of algorithms

Important components in algorithms:

Initial situation/condition/input (Initial state): can take zero
or more inputs.

Final situation/condition/output (Output state): at least one
output.

Definiteness: Each step must be clear, well-defined and
precise. There should be no any ambiguity.

Finiteness: should have finite number of steps and it should
end after a finite time.

Effectiveness: each step must be simple and should take a
finite amount of time.

Constraints given in the beginning and during composing the
algorithm (Constraint and assumption)

4 / 10 Intro to DAA

Example of classical algorithmic problems

1. Traveling Salesman Problem (TSP)

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city exactly
once and returns to the origin city?

5 / 10 Intro to DAA

Example of classical algorithmic problems

2. Integer Knapsack Problem

Given a set of items, each with a weight and a value, determine
the number of each item to include in a collection so that the total
weight is less than or equal to a given limit and the total value is
as large as possible.

5 / 10 Intro to DAA

Example of classical algorithmic problems

3. Coloring problem

Given a graph of n vertices, determine the minimum number of
different colors needed to color the vertices such that no two
adjacent vertices are of the same color. We also want to find a way
to color the graph.

5 / 10 Intro to DAA

Example of classical algorithmic problems

4. Shortest path problem

Given a graph of n vertices, find a path between two vertices (or
nodes) in a graph such that the sum of the weights of its
constituent edges is minimized.

5 / 10 Intro to DAA

Example of classical algorithmic problems

5. Assignment problem

Given n staffs and n tasks. Anyone can be assigned to perform any
task, incurring some cost c(i , j) that may vary depending on the
staff(si)-task(tj) assignment. It is required to perform as many
tasks as possible by assigning one staff to each task, in such a way
that the total cost

∑
c(i , j) of the assignment is minimized.

5 / 10 Intro to DAA

Example of classical algorithmic problems

6. Partition problem

Given a multiset S of positive integers, decide whether S can be
partitioned into two subsets S1 and S2 such that the sum of the
numbers in S1 equals the sum of the numbers in S2.

5 / 10 Intro to DAA

The study of algorithms

Why do we need an algorithm?

1 To understand the basic idea or the flow of the problem.

2 To find an approach to solve the problem. A good design can
produce a good solution.

3 To understand the basic principles of designing the algorithms.

4 Compare the performance of the algorithm w.r.t. other techniques.

5 To improve the efficiency of existing techniques.

6 It is the best method of description without describing the
implementation detail.

7 To measure the behavior (or performance) of the methods in all
cases (best cases, worst cases, average cases)

8 We can measure and analyze the complexity (time and space) of the
problems concerning input size without implementing and running
it; it will reduce the cost of design.

6 / 10 Intro to DAA

The study of algorithms

DAA helps to:

Design the algorithms for solving problems in CS.

Design and analyze the logic on how the program will work
before developing the actual code.

Classifying algorithms based on their
purpose/design/complexity/etc..

6 / 10 Intro to DAA

The study of algorithms

Design of algorithms: a method or a mathematical process for
problem-solving and engineering algorithms.

Process:

1 Step 1: Obtain a description of the problem. This step is
much more difficult than it appears.

2 Step 2: Analyze the problem.

3 Step 3: Develop a high-level algorithm.

4 Step 4: Refine the algorithm by adding more detail.

5 Step 5: Review the algorithm.

6 / 10 Intro to DAA

The study of algorithms

Analysis of algorithms:

Correctness

Does the input/output relation match algorithm requirements?

Amount of work done (aka complexity)

The number of basic operations to do a task

Amount of space used

Memory used

Simplicity, clarity

Verification and implementation

Optimality

Is it possible to do better?

6 / 10 Intro to DAA

The study of algorithms

What makes a good algorithm?

Correctness

Efficiency

6 / 10 Intro to DAA

The study of algorithms

Analysis of algorithms: Correctness

Definition

An algorithm to solve a problem P is correct iff for all the problem
instance i ∈ I , it terminates and produces correct output o ∈ O.

Proving correctness is done using formal mathematical proof:

Counterexample (indirect proof)

Induction (direct proof)

Loop Invariant

Other approaches: proof by cases/enumeration, by chain of iffs, by
contradiction, by contrapositive.

6 / 10 Intro to DAA

The study of algorithms

Analysis of algorithms: Space/time complexity

Two fundamental parameters based on which we can analysis the
efficiency of an algorithm:

Space Complexity: the amount of space (storage) required by
an algorithm to run to completion.

Time Complexity: a function of input size n that refers to the
amount of time needed by an algorithm to run to completion.

or other resources needed to execute them

6 / 10 Intro to DAA

The study of algorithms

How to compute the gcd of two numbers m and n?

Middle-school procedure:

1 Find the prime factors of m.

2 Find the prime factors of n.

3 Identify all the common factors in the two prime expansions found in
Steps 1 and 2. (If p is a common factor occurring pm and pn times
in m and n, respectively, it should be repeated min{pm, pn} times.)

4 Compute the product of all the common factors and return it as the
gcd of the numbers given.

Euclid algorithm:

1 Assign the value of min{m, n} to t.

2 Divide m by t. If the remainder of this division is 0, go to Step 3;
otherwise, go to Step 4.

3 Divide n by t. If the remainder of this division is 0, return the value
of t as the answer and stop; otherwise, proceed to Step 4.

4 Decrease the value of t by 1. Go to Step 2.
6 / 10 Intro to DAA

Outline of the semester

1 Introduction to design and analysis of algorithms

2 Complexity analysis of algorithms

3 Brute Force algorithm

4 Recursive algorithm

5 Divide-and-Conquer, Decrease-and-Conquer,
Transform-and-Conquer algorithms

6 BFS and DFS, Backtracking, Branch & Bound algorithms

7 Dynamic programming

8 Greedy algorithm

9 Graph algorithms

10 Computational complexity theory (P, NP, NP-C)

7 / 10 Intro to DAA

References

Introduction to Algorithms (Thomas H. Cormen, C. E.
Leiserson, R. Rivest, C. Stein), The MIT Press, 1989.

Introduction to the Design and Analysis of Algorithms (Anany
Levitin), Pearson, 2012.

Kuliah pengantar Strategi Algoritma (Rinaldi Munir ITB)

e-Modul Struktur Data dan Analisis Algoritma (Made Windu
A. Kesiman, PTI Undiksha)

8 / 10 Intro to DAA

Overview

2. Complexity analysis

Determining a functions of time complexity and space complexity.
An algorithm is said to be efficient when this function’s values are
small, or grow slowly compared to the growth in the size of input.

n: the size of input

T (n): the number of computations/steps (comparison,
arithmetic operations, accessing an array, etc.)

S(n): memory/storage space

Measuring complexity: best-case, worst-case, and average-case

We usually estimate the complexity asymptotically , i.e., to
estimate the complexity function for arbitrarily large input.
We use Big O (upper-bound), Big-omega (lower-bound) and
Big-theta (tight-bound) notations.

9 / 10 Intro to DAA

Overview

3. Brute Force algorithm / Exhaustive search

This is the most basic and simplest type of algorithm. It
systematically enumerate all possible candidates for the solution
and check whether each candidate is the solution of the problem’s
statement.

Example: Given a lock of 4-digit PIN, where the digits to be
chosen from 0-9. The brute force will be trying all possible
combinations one by one like 0001, 0002, 0003, 0004, and so on
until we get the right PIN (there are at most 10000 trials).

9 / 10 Intro to DAA

Overview

4. Recursive algorithm

In CS, recursion is a method of solving a problem where the
solution depends on solutions to smaller instances of the same
problem.

This is an algorithm which calls itself with ”smaller (or simpler)”
input values, and which obtains the result for the current input by
applying simple operations to the returned value for the smaller (or
simpler) input.

9 / 10 Intro to DAA

Overview

5. Divide-and-conquer algorithm

It works by recursively breaks down a problem into two/more
sub-problems of the same/related type, until these become simple
enough to be solved directly. The solutions to the sub-problems are
then combined to give a solution to the original problem.

Figure: Divide-and-conquer algorithm to sort a sequence of numbers

9 / 10 Intro to DAA

Overview

6. Decrease-and-conquer algorithm

Three main steps:

Decrease or reduce problem instance to smaller instance of the same
problem and extend solution.

Conquer the problem by solving smaller instance of the problem.

Extend solution of smaller instance to obtain solution to original
problem.

Basic idea: exploiting the relationship between a solution to a
given instance of a problem and a solution to its smaller instance.

9 / 10 Intro to DAA

Overview

7. Transform-and-conquer algorithm

The technique used in designing algorithms that will transform (to
transform) a case into another form, then determine a solution (to
conquer) from the new form of the case.

1 First stage involves the transformation to another problem
that is more amenable for solution.

2 Second stage involves solving the new problem where the
transformed new problem is solved. Then the solutions are
converted back to the original problem

Example: multiplying two simple numbers XII and IV (in Roman
number system).

1st stage: the numbers XII and IV is transformed to another
problem of 12× 4.

2nd stage: the actual multiplication is done as 48, then the
result is converted to Roman number as XLVIII.

9 / 10 Intro to DAA

Overview

8. BFS and DFS algorithms

Breadth-first search (BFS) is a graph traversal algorithm that
starts traversing the graph from the root node and explores all the
neighboring nodes. While for Depth-first search (DFS) starts at
the root node and explores as far as possible along each branch
before backtracking.

(a) BFS (b) DFS

9 / 10 Intro to DAA

Overview

9. Backtracking algorithm

Backtracking is an algorithmic technique where the goal is to get
all solutions to a problem using the brute force approach.

Example: We want to enumerate the different ways to order 2
girls and a boy in a row.

B1 G2 B1 G1 G1G2

G2 G1B1 G1 B1 G2

G1 G2 B1

9 / 10 Intro to DAA

Overview

10. Branch and bound algorithm

Similar to the backtracking since it also uses the state space tree.
It is used for solving the optimization problems and minimization
problems. If we have given a maximization problem then we can
convert it using the Branch and bound technique by simply
converting the problem into a maximization problem.

B1 G2 B1 G1 G1G2

G2 G1B1 G1 B1 G2

G1 G2 B1

9 / 10 Intro to DAA

Overview

11. Dynamic programming This is a technique that helps to

efficiently solve a class of problems that have overlapping
subproblems and optimal substructure property.

Dynamic programming is mostly applied to recursive algorithms.

9 / 10 Intro to DAA

Overview

12. Greedy algorithm

It is an algorithmic paradigm that builds up a solution piece by
piece, by always choosing, at each step, the next piece that offers
the most obvious and immediate benefit (i.e. locally optimal
choice).

Figure: Greedy algorithm to find a path from A to J

9 / 10 Intro to DAA

Overview

13. Graph algorithms

A graph is an abstract notation used to represent the connection
between pairs of objects. A graph consists of:

Vertices/Nodes: interconnected objects in a graph.

Edges: links that connect the vertices.

Example: shortest path, minimum spanning tree, cycle detection,
strongly connected component, graph coloring, maximum flow

9 / 10 Intro to DAA

Overview

14. Computational complexity theory (P, NP, NPC)

Focuses on classifying computational problems according to their
resource usage, and the relation between classes.

A computational problem is a task solved by a computer.

The computational complexity or simply complexity of an algorithm
is the amount of resources (time and memory) required to run it.

The complexity of a problem is the complexity of the best
algorithms that allow solving the problem.

Figure: Computational complexity classes

9 / 10 Intro to DAA

Classification of algorithms based on the strategy

1 Direct solution: brute-force, greedy

2 Space-state base: backtracking, branch and bound

3 Top-down solution: divide-and-conquer,
decrease-and-conquer, transform-an-conquer, dynamic
programming, BFS & DFS

4 Bottom-up solution: dynamic programming

10 / 10 Intro to DAA

