TD 10: Digital Signature

Exercise o. [Homework discussion]
Exercise 1. [RO does not exist]
In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-1 (or any fixed hash function). Let Π be a encryption scheme that is secure in the standard model.
Construct a signature scheme Π_{y} where the signing is carried out as follows: if $H(0)=y$ then output the secret key, if $H(0) \neq y$ then return a signature computed using Π.

1. Prove that for any value y, the scheme Π_{y} is secure in the random oracle model.
2. Show that there exists a particular y for which Π_{y} is insecure when the random oracle model is instantiated with SHA-1.

Exercise 2. [Using collision resistant hashing for digital signature]

Recall the definition of a digital signature scheme $\mathcal{S}=(G, S, V)$ given in the course. We present a similar approach as for MACs, that is called hash-and-sign paradigm. Let $H: \mathcal{M}^{\prime} \rightarrow \mathcal{M}$ be a hash function where $\left|\mathcal{M}^{\prime}\right| \gg|\mathcal{M}|$. Define a new signature scheme $\mathcal{S}^{\prime}=\left(G^{\prime}, S^{\prime}, V^{\prime}\right)$ for the message space \mathcal{M}^{\prime}, as:

$$
S^{\prime}(s k, m):=S(s k, H(m)) \text { and } V^{\prime}(p k, m, \tau):=V^{\prime}(p k, H(m), \tau)
$$

Show that the signature scheme \mathcal{S}^{\prime} is secure provided \mathcal{S} is a secure signature scheme, and the hash function H is collision-resistant.

Exercise 3. [Full domain hash signature scheme]

Recall the definition of full domain hash $\mathcal{S}_{\text {FDH }}$ given in the course. This scheme can be proven to be secure in ROM as long as it uses a secure trapdoor permutation scheme \mathcal{T}. Consider a modified scheme, where the scheme does not apply the hash function H to the message, i.e., we define the signature on message $m \in \mathcal{X}$ as $\tau:=I(s k, m)$. Could this modified scheme be secure?

Exercise 4. [Secure pairing-based signature in the ROM]

In this exercise, we assume we have two cyclic groups G and G_{T} of the same cardinality q, and a generator g of G. We also assume we have a pairing function $e: G \times G \rightarrow G_{T}$, with the following properties: It is non-degenerate, i.e., $e(g, g) \neq 1$; It is bilinear, i.e., $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$ for all $a, b \in \mathbb{Z} / q \mathbb{Z}$; It is computable in polynomial-time. Note that the bilinearity property implies that $e\left(g^{a}, g\right)=e\left(g, g^{a}\right)=e(g, g)^{a}$ holds for all $a \in \mathbb{Z} / q \mathbb{Z}$.

1. Show that the Decision Diffie-Hellman problem (DDH) on G can be solved in polynomial-time.
2. We consider the following signature scheme (due to Boneh, Lynn and Shacham):

- KeyGen takes as inputs a security parameter and returns G, g, q, G_{T} and a description of e : $G \times G \rightarrow G_{T}$ satisfying the properties above. All these are made publicly available. Sample x uniformly in $\mathbb{Z} / q \mathbb{Z}$. The verification key is $v k=g^{x}$, whereas the signing key is $s k=x$.
- Sign takes as inputs sk and a message $M \in\{0,1\}^{*}$. It computes $h=H(M) \in G$ where H is a hash function, and returns $\sigma=h^{x}$.
- Verify takes as inputs the verification key $v k=g^{x}$, a message M and a signature σ, and returns 1 if and only if $e(\sigma, g)=e(H(M), v k)$.

Show that this signature scheme is EU-CMA secure (same definition as in the course) under the Computational Diffie Hellman assumption (CDH) relative to G, when $H(\cdot)$ is modeled as a (fulldomain hash) random oracle.
Remark. CDH assumption: given a cyclic group G of order $q,\left(g, g^{a}, g^{b}\right)$ for randomly chosen generator g and $a, b \leftarrow \mathcal{U}(\mathbb{Z} / q \mathbb{Z})$, it is "hard" to compute $g^{a b}$.

