TD 10: Digital Signature

Exercise o. [Homework discussion]

Exercise 1. [RO does not exist]

In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-1 (or any fixed hash function). Let Π be a encryption scheme that is secure in the standard model.

Construct a signature scheme Π_y where the signing is carried out as follows: if H(0) = y then output the secret key, if $H(0) \neq y$ then return a signature computed using Π .

- 1. Prove that for any value y, the scheme Π_y is secure in the random oracle model.
- 2. Show that there exists a particular y for which Π_y is insecure when the random oracle model is instantiated with SHA-1.

Exercise 2. [Using collision resistant hashing for digital signature]

Recall the definition of a digital signature scheme S = (G, S, V) given in the course. We present a similar approach as for MACs, that is called **hash-and-sign paradigm**. Let $H : \mathcal{M}' \to \mathcal{M}$ be a hash function where $|\mathcal{M}'| >> |\mathcal{M}|$. Define a new signature scheme S' = (G', S', V') for the message space \mathcal{M}' , as:

$$S'(sk, m) := S(sk, H(m))$$
 and $V'(pk, m, \tau) := V'(pk, H(m), \tau)$

Show that the signature scheme S' is secure provided S is a secure signature scheme, and the hash function H is collision-resistant.

Exercise 3. [Full domain hash signature scheme]

Recall the definition of **full domain hash** S_{FDH} given in the course. This scheme can be proven to be secure in ROM as long as it uses a secure trapdoor permutation scheme \mathcal{T} . Consider a modified scheme, where the scheme does not apply the hash function H to the message, i.e., we define the signature on message $m \in \mathcal{X}$ as $\tau := I(sk, m)$. Could this modified scheme be secure?

Exercise 4. [Secure pairing-based signature in the ROM]

In this exercise, we assume we have two cyclic groups G and G_T of the same cardinality q, and a generator g of G. We also assume we have a pairing function $e : G \times G \to G_T$, with the following properties: It is non-degenerate, i.e., $e(g,g) \neq 1$; It is bilinear, i.e., $e(g^a, g^b) = e(g,g)^{ab}$ for all $a, b \in \mathbb{Z}/q\mathbb{Z}$; It is computable in polynomial-time. Note that the bilinearity property implies that $e(g^a, g) = e(g, g^a) = e(g, g)^a$ holds for all $a \in \mathbb{Z}/q\mathbb{Z}$.

- 1. Show that the Decision Diffie-Hellman problem (DDH) on G can be solved in polynomial-time.
- 2. We consider the following signature scheme (due to Boneh, Lynn and Shacham):
 - KeyGen takes as inputs a security parameter and returns G, g, q, G_T and a description of $e : G \times G \to G_T$ satisfying the properties above. All these are made publicly available. Sample x uniformly in $\mathbb{Z}/q\mathbb{Z}$. The verification key is $vk = g^x$, whereas the signing key is sk = x.

- Sign takes as inputs *sk* and a message $M \in \{0,1\}^*$. It computes $h = H(M) \in G$ where *H* is a hash function, and returns $\sigma = h^x$.
- Verify takes as inputs the verification key $vk = g^x$, a message M and a signature σ , and returns 1 if and only if $e(\sigma, g) = e(H(M), vk)$.

Show that this signature scheme is EU-CMA secure (same definition as in the course) under the Computational Diffie Hellman assumption (CDH) relative to *G*, when $H(\cdot)$ is modeled as a (full-domain hash) random oracle.

Remark. CDH assumption: given a cyclic group *G* of order *q*, (g, g^a, g^b) for randomly chosen generator *g* and $a, b \leftarrow U(\mathbb{Z}/q\mathbb{Z})$, it is "hard" to compute g^{ab} .