## TD 8: Public Key Cryptography

## Exercise 1. [HMAC]

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
2. Before HMAC was invented, it was quite common to define a MAC by $\operatorname{Mac}_{k}(m)=H^{s}(k \| m)$ where $H$ is a collision-resistant hash function. Show that this is not a secure MAC when $H$ is constructed via the Merkle-Damgård transform.

## Exercise 2. [Pedersen's hash function]

Pedersen's hash function is as follows:

- Given a security parameter $n$, algorithm Gen samples $(G, g, q)$ where $G=\langle g\rangle$ is a cyclic group of cardinality $q$, a prime number. It then sets $g_{1}=g$ and samples $g_{i}$ uniformly in $G$ for all $i \in\{2, \ldots, k\}$, where $k \geq 2$ is some parameter. Finally, it returns ( $G, q, g_{1}, \ldots, g_{k}$ ).
- The hash of message $M=\left(M_{1}, \ldots, M_{k}\right) \in(\mathbb{Z} / q \mathbb{Z})^{k}$ is $H(M)=\prod_{i=1}^{k} g_{i}^{M_{i}} \in G$.

1. Assume for this question that $G$ is a subgroup of prime order $q$ of $(\mathbb{Z} / p \mathbb{Z})^{\times}$, where $p=2 q+1$ is prime. What is the compression factor in terms of $k$ and $p$ ?

Definition 1. (Discrete Logarithm Problem (DLP)). Given G, $g$, and $h \in G$ where $G=\langle g\rangle$ is a cyclic group of cardinality $q$, prime number. The DLP asks for $x \in \mathbb{Z} \backslash q \mathbb{Z}$ such that $g^{x} \equiv h \bmod q$. The problem is hard if no efficient adversary can find such $x$ with non-negligible advantage.
2. Assume for this question that $k=2$. Show that Pedersen's hash function is collision-resistant, under the assumption that the DLP is hard for $G$.
3. Same question as the previous one, with $k \geq 2$ arbitrary.

## Exercise 3. [Semantic security and CPA-security]

Let us define the following experiments for $b \in\{0,1\}$ and $Q=\operatorname{poly}(\lambda)$. For $\operatorname{Exp}_{b}^{\text {many-CPA }}$

| $\mathcal{C}$ | $\mathcal{A}$ |
| :---: | :---: |
| $(p k, s k) \leftarrow \operatorname{Keygen}\left(1^{\lambda}\right)$ |  |
| sends $p k$ to $\mathcal{A}$ | sends $\left(m_{0}^{i}, m_{1}^{i}\right)_{i=1}^{Q}$ to $\mathcal{C}$ |
| $\left(c_{i}^{*}=\operatorname{Enc}_{p k}\left(m_{b}^{(i)}\right)\right)_{i=1}^{Q}$ |  |
| sends $\left(c_{i}^{*}\right)_{i=1}^{Q}$ to $\mathcal{A}$ | outputs a bit $b^{\prime} \in\{0,1\}$ |

The advantage of $\mathcal{A}$ in the many-time CPA game is defined as:

$$
A d v^{\text {many-CPA }}(\mathcal{A})=\left|\operatorname{Pr}_{(p k, s k)}\left[\mathcal{A} \rightarrow 1 \mid E x p_{1}^{\text {many-CPA }}\right]-\operatorname{Pr}_{(p k, s k)}\left[\mathcal{A} \rightarrow 1 \mid \operatorname{Exp}_{0}^{\text {many-CPA }}\right]\right|
$$

1. Recall the "Semantic security" game given in the lecture. What is the difference?
2. Show that the two definitions are equivalent.
3. Do we have a similar equivalence in the private-key setting?

## Exercise 4. [Pollard-rho]

Let $\mathbb{G}$ be a cyclic group generated by $g$, of (known) prime order $q$, and let $h$ be an element of $\mathbb{G}$. Let $F: \mathbb{G} \rightarrow \mathbb{Z}_{q}$ be a nonzero function, and let us define the function $H: \mathbb{G} \rightarrow \mathbb{G}$ by $H(\alpha)=\alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called Pollard $\rho$ Algorithm).

## Pollard $\rho$ Algorithm

Input: $h, g \in \mathbb{G}$
Output: $x \in\{0, \ldots, q-1\}$ such that $h=g^{x}$ of fail.
. $i \leftarrow 1$
$x \leftarrow 0, \alpha \leftarrow h$
$y \leftarrow F(\alpha) ; \beta \leftarrow H(\alpha)$
while $\alpha \neq \beta$ do
$x \leftarrow x+F(\alpha) \bmod q ; \alpha \leftarrow H(\alpha)$
$y \leftarrow y+F(\beta) \bmod q ; \beta \leftarrow H(\beta)$
$y \leftarrow y+F(\beta) \bmod q ; \beta \leftarrow H(\beta)$
$i \leftarrow i+1$
end while
o. if $i<q$ then

```
    return (x-y)/i mod}
```

    else
    return fail
    end if
    To study this algorithm, we define the sequence $\left(\gamma_{i}\right)$ by $\gamma_{1}=h$ and $\gamma_{i+1}=H\left(\gamma_{i}\right)$ for $i \geqslant 1$.

1. Show that in the while loop from lines 4 to 9 of the algorithm, we have $\alpha=\gamma_{i}=g^{x} h^{i}$ and $\beta=\gamma_{2 i}=$ $g^{y} h^{2 i}$.
2. Show that if this loop finishes with $i<q$, then the algorithm returns the discrete logarithm of $h$ in basis $g$.
3. Let $j$ be the smallest integer such that $\gamma_{j}=\gamma_{k}$ for $k<j$. Show that $j \leqslant q+1$ and that the loop ends with $i<j$.
4. Show that if $F$ is a random function, then the average execution time of the algorithm is in $O\left(q^{1 / 2}\right)$ multiplications in $\mathbb{G}$.
