## TD 7+: A quick remainder on Number Theory

## 1 Primes and divisibility

Let $\mathbf{Z}$ be the set of integers. For $a, b \in \mathbf{Z}$, we say that $a$ divides $b$, written $a \mid b$ if there exists $k \in \mathbf{Z}$ such that $b=k a$. If $a \notin\{1, b\}, a$ is called a factor of $b$. An integer $p$ is prime if it has no factors (i.e. if it has only two divisors 1 and itself).

Theorem 1. Every integer greater than 1 can be expressed uniquely as a product of primes. Let $N>0$,

$$
N=\prod_{i} p_{i}^{e_{i}} \text { with } p_{i} \text { prime and } e_{i} \geq 1
$$

Proposition 1. Let $a$ be an integer and $b$ be a positive integer, there exist unique integers $q, r$ such that

$$
a=q b+r \text { with } 0 \leq r<b
$$

The greatest common divisor of two non-negative integers $a, b$, written $\operatorname{gcd}(a, b)$, is the largest integer $c$ such that $c \mid a$ and $c \mid b$.

Proposition 2. Let $a, b$ be positive integers. Then there exists integers $X, Y$ such that $X a+Y b=\operatorname{gcd}(a, b)$. Futhermore, $\operatorname{gcd}(a, b)$ is the smallest positive integer that can be expressed in this way.
Given $a$ and $b$, the Euclidean algorithm can be used to compute $\operatorname{gcd}(a, b)$ in polynomial time. The extended Euclidean algorithm can be used to compute $X$ and $Y$ in polynomial time as well.

Proposition 3. Let $a, b, c, p, q, N$ be integers.

- If $c \mid a b$ and $\operatorname{gcd}(a, c)=1$ then $c \mid b$.
- If $p|N, q| N$ and $\operatorname{gcd}(p, q)=1$ then $p q \mid N$.


## 2 Modular Arithmetic

Let $a, b, N \in \mathbf{Z}$ with $N>1$. The notation $(a \bmod N)$ denotes the remainder of $a$ upon division by $N$. We say that $a$ and $b$ are congruent modulo $N$ if $a \bmod N=b \bmod N$. Note that congruence modulo $N$ is an equivalence relation. It also obeys the standard rules of arithmetic with respect to addition, substraction and multiplication. But in general it does not respect division.
If there exists $b^{-1}$ such that $b b^{-1}=1 \bmod N$, we say that $b^{-1}$ is a multiplicative inverse of $b$ modulo $N$. When $b$ is invertible modulo $N$, we define division by $b$ modulo $N$ as multiplication by $b^{-1}$ modulo $N$. We stress that division by $b$ is only defined when $b$ is invertible modulo $N$.
Proposition 4. Let $a, N$ be integers with $N>1$. Then a is invertible modulo $N$ if and only if $\operatorname{gcd}(a, N)=1$.

### 2.1 Groups

We will always deal with finite, abelian groups. We call order of a group the number of elements in the group.
Let $\mathbf{G}$ be a multiplicative group, $g \in \mathbf{G}$ and $b>0$ be an integer. Then the exponentiation $g^{b}$ can be computed using a polynomial number of underlying group operations in $\mathbf{G}$.
Theorem 2. Let $\mathbf{G}$ be a finite group of order $m$. Then for any element $g \in \mathbf{G}, g^{m}=1$.
Corollary 1. Let $\mathbf{G}$ be a finite group of order $m>1$. Then for $g \in \mathbf{G}$ and any integer $i$, we have $g^{i}=g^{i \bmod m}$.

## 3 The group $Z_{N}^{*}$

For any $N>1$, the set $\mathbb{Z}_{N}=\{0, \ldots, N-1\}$ is a group under addition modulo $N$. We now define $\mathbf{Z}_{N}^{*}$ as:

$$
\mathbb{Z}^{\star}=\{a \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(a, N)=1\}
$$

i.e. all the integers relatively prime to $N$ in $\mathbb{Z}_{N}$. Then under multiplication modulo $N$, all the elements of this set are invertible.

Theorem 3. Let $N>1$ be an integer. Then $\mathbb{Z}^{\star}$ is an abelian group under multiplication modulo $N$.

## Euler function

The Euler function $\varphi$ is defined as $\varphi(N)=\left|\mathbb{Z}^{\star}\right|$, it is the order of the group $\mathbb{Z}^{\star}$. When $N=p$ prime, then all elements of $\{1, \ldots, p-1\}$ are relatively prime to $p$, and then $\phi(p)=p-1$. When $N=p q$ with $p$ and $q$ are distinct primes, then if an integer $a \in\{1, \ldots, N-1\}$ is not relatively prime to $N$, then either $p \mid a$ or $q \mid a$. The elements in this set divisible by $p$ are exactly the $(q-1)$ elements $p, 2 p, \ldots,(q-1) p$, and the elements divisible by $q$ are exactly the $(p-1)$ elements $q, 2 q, \ldots,(p-1) q$. The number of elements remaining is therefore

$$
N-1-(q-1)-(p-1)=p q-q-p+1=(p-1)(q-1)
$$

Then if $N=p q$ with $p$ and $q$ are distinct primes, $\phi(N)=(p-1)(q-1)$.
Theorem 4. Let $N=\prod_{i} p_{i}^{e_{i}}$, where the $p_{i}$ are distinct primes and $e_{i} \geq 1$. Then $\phi(N)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)$.
Theorem 5 (Fermat). Take arbitrary $N>1$ and $a \in \mathbb{Z}^{\star}$, then

$$
a^{\phi(N)}=1 \bmod N .
$$

For the specific case that $N=p$ is prime, we have $a^{p-1}=1 \bmod p$.

## 4 Chinese Remainder Theorem

We use the notation $\simeq$ to say that two groups are isomorphic.
Theorem 6. Let $N=p q$ where $p$ and $q$ are relatively prime. Then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{q} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}
$$

Moreover, let $f$ be the function mapping elements $x \in\{0, \ldots, N-1\}$ to pairs $\left(x_{p}, x_{q}\right)$ with $x_{p} \in\{0, \ldots, p-1\}$ and $x_{q} \in\{0, \ldots, q-1\}$ defined by

$$
f(x)=(x \bmod p, x \bmod q)
$$

Then $f$ is an isomorphism from $\mathbb{Z}_{N}$ to $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$, as well as an isomorphism from $\mathbb{Z}_{N}^{*}$ to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$.
This theorem does not require $p$ or $q$ to be prime. En extension of this Theorem says that if $p_{1}, \ldots, p_{\ell}$ are pairwise relatively prime and $N=\prod_{i} p_{i}$, then

$$
\mathbb{Z}_{N} \simeq \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{\ell}} \text { and } \mathbb{Z}_{N}^{*} \simeq \mathbb{Z}_{p_{1}}^{*} \times \cdots \times \mathbb{Z}_{p_{\ell}}^{*}
$$

An isomorphism in each case is obtained by a natural extension of the one used in the theorem.
For the specific case of $N=p q$ product of distinct primes. The Chinese Remainder Theorem shows that addition or multiplication modulo $N$ can be transformed to analogous operations modulo $p$ and $q$. This conversion can be carried out in polynomial time if the factorisation of $N$ is known.

## 5 Cyclic groups

Let $\mathbf{G}$ be a finite group and $g \in \mathbf{G}$, then the order of $g$ is the smallest $i$ such that $g^{i}=1$.
Proposition 5. If $g$ is an element of order $i$, then $g^{x}=g^{x \bmod i}$. Furthermore, $g^{x}=g^{y}$ if, and only if, $x=y \bmod i$.
The identity of any group $\mathbf{G}$ has order 1 . At the other extreme, if there exists an element $g \in \mathbf{G}$ of order $m$ (the order of $\mathbf{G}$ ), then the set $\langle g\rangle=\left\{g^{0}, g^{1}, \ldots\right\}$ generated by $g$ is equal to $\mathbf{G}$. In this case, we call $\mathbf{G}$ a cyclic group and we say that $g$ is a generator of $\mathbf{G}$.

Theorem 7. Lagrange Let $\mathbf{G}$ be a finite group of order $m$ and $g \in \mathbf{G}$ an element of order $i$. Then $i \mid m$.
Corollary 2. If $\mathbf{G}$ is a group of prime order $p$, then $\mathbf{G}$ is cyclic. Furthermore, all elements of $\mathbf{G}$ except the identity are generators of $\mathbf{G}$.

Groups of prime order form one class of cyclic groups. The additive group $\mathbb{Z}$ for $N>1$ is another example. Another important example (which does not have prime order for $p>3$ ) is the following.

Theorem 8. If $p$ is prime, then $\mathbb{Z}_{p}^{*}$ is cyclic.

## 6 Primes, factoring

Given a composite integer $N$, the factoring problem is to find positive integers $p, q$ such that $N=p q$. Factoring is a classic example of hard problem, no polynomial-time algorithm that solves the factoring problem has been yet developed.

## Primes

The distribution of primes is given by the prime number theorem which gives a precise bounds on the fraction of integers of a given length that are prime. This theorem implies that the probability that a random $n$-bit integer is prime is at least $c / n$ for a constant $c$.
The most commonly-used algorithm to test primality is the Miller-Rabin algorithm. This algorithm takes at input an integer $N$ and an integer $t$ that determine the error probability. It runs in time polynomial in $|N|$ and $t$ and if $N$ is prime, it always outputs "prime", otherwise it outputs "prime" with probability at most $2^{-t}$.
Putting all of this together there exists a polynomial-time prime-generation algorithm that, on input $n$, outputs a random $n$-bits prime except with probability negligible in $n$.

## 7 Exercises

## Exercise 1. [Factorization]

1. Let $N=p q$ be a product of $p$ and $q$ two distinct primes. Show that if $\varphi(N)$ and $N$ are known, then it is possible to compute $p$ and $q$ in polynomial time.

## Exercise 2. [Generator]

Let $p \geq 3$ be a prime. The group $\mathbb{G}=(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic. The purpose of the exercise is to find a generator of that group, i.e., an element $g$ such that $(\mathbb{Z} / p \mathbb{Z})^{*}=\left\{g^{k}: k \in \mathbb{Z}\right\}$.

1. For $g \in \mathbb{G}$, we call the order of $g$ the smallest $k>0$ such that $g^{k}=1$, denoted by $\mathcal{O}(g)$. Show that for any $g \in \mathbb{G}$, we have $\mathcal{O}(g) \mid p-1$.
2. Give an element of $\mathbb{G}$ that is not a generator of $\mathbb{G}$. How many elements of $\mathbb{G}$ are generators?
3. Assume that $p-1=2 q$ for some $q$ that is prime. Give an efficient algorithm that finds a generator of $\mathbb{G}$. How do we find such a prime $p$ ?

## Exercise 3. [Modulo]

Let $p, N$ be integers with $p \mid N$.

1. Prove that for any integer $X$,

$$
(X \bmod N) \bmod p=X \bmod p
$$

2. Show that, in contrast, $(X \bmod p) \bmod N$ may not be equal to $X \bmod N$.

## Exercise 4. [Algebraic structure]

Let $N=p q$ with $p$ and $q$ distinct odd primes of identical bit-size. We want to study the algebraic structure of $\left(\mathbb{Z} / N^{2} \mathbb{Z}\right)^{\star}$. Show the following propositions:

1. $\operatorname{gcd}(N, \varphi(N))=1$.
2. For any $a \in \mathbb{N},(1+N)^{a}=(1+a N) \bmod N^{2}$.
3. As a consequence, $(1+N)$ has order $N \bmod N^{2}$.

## Exercise 5. [Phi function]

1. Let $p$ be a prime, show that $\varphi(p)=p-1$.
2. Let $p$ and $q$ be distinct primes and $N=p q$, show that $\varphi(N)=(p-1)(q-1)$.
3. Let $p$ be a prime and $e \geq 1$ an integer. Show that

$$
\varphi\left(p^{e}\right)=p^{e-1}(p-1)
$$

4. Let $p, q$ be relatively prime. Show that $\varphi(p q)=\varphi(p) \varphi(q)$.
5. Prove Theorem 4.

## Exercise 6. [RSA]

1. Let $N=p q$ for $p$ and $q$ distinct primes, and $e, d$ integers such that $e d=1 \bmod \varphi(N)$. Show that for all $x \in \mathbb{Z}_{N}$, we have $\left(x^{e}\right)^{d}=x \bmod N$.
Hint: Use the Chinese remainder theorem.

Exercise 7. [Quadratic residues]
$\rightarrow$ read again Exercise 5 from TD 2

