TD 7: Hash functions

Definition 1. A hash function is a pair of probabilistic polynomial-time algorithms (Gen, H) satisfying the following:

- Gen is a probabilistic algorithm which takes as input a security parameter 1ⁿ and outputs a key s. We assume that 1ⁿ is implicit in s.
- There exists a polynomial l such that H takes as input a key s and a string $x \in \{0,1\}^*$ and outputs a string $H^s(x) \in \{0,1\}^{l(n)}$ (where n is the value of the security parameter implicit in s).

If H^s is defined only for inputs $x \in \{0,1\}^{l'(n)}$ and l'(n) > l(n), then we say that (Gen, H) is a fixed-length hash function for inputs of length l'(n).

Definition 2. The collision-finding game is defined as follows:

- 1. A key s is generated by running $Gen(1^n)$
- 2. The adversary A is given s and outputs x, x' (if Π is a fixed-length hash function for inputs of length l'(n) then we require $x, x' \in \{0, 1\}^{l'(n)}$).
- 3. A wins (i.e., it finds a collision) if and only if $x \neq x'$ and $H^{s}(x) = H^{s}(x')$.

Definition 3. A hash function $\Pi = (\text{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries A, we have

$$Pr[\texttt{HashColl}_{\mathcal{A}}(\Pi)]$$

is negligible.

Exercise 1. [Collision resistance]

- 1. Let (Gen, H) be a collision-resistant hash function. Is (Gen, \hat{H}) defined by $\hat{H}^s =_{def} H^s(H^s(x))$ necessarily collision-resistant?
- 2. Let (Gen, H_1) and (Gen', H_2) be a collision-resistant hash functions such that $H_1 := \{0, 1\}^n \to \{0, 1\}^m$ and $H_1 := \{0, 1\}^m \to \{0, 1\}^l$. Is (Gen, \hat{H}) defined by $\hat{H}^{(s_1, s_2)} =_{def} H_2^{s_2}(H_1^{s_1}(x))$ necessarily collision-resistant?

Exercise 2. [SIS]

Definition 4 (Learning with Errors). Let $\ell < k \in \mathbb{N}$, $n < m \in \mathbb{N}$, $q = 2^k$, $B = 2^\ell$, $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text{LWE},\mathbf{A}} = (\mathbf{A}, \mathbf{A} \cdot \mathbf{s} + \mathbf{e} \mod q)$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftrightarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^m \cap \mathbb{Z}^m\right)$.

The *LWE*_{**A**} *assumption* states that, given suitable parameters *k*, ℓ , *m*, *n*, it is computationally hard to distinguish $D_{\text{LWE},\mathbf{A}}$ from the distribution ($\mathbf{A}, U(\mathbb{Z}_q^m)$).

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ with $m > n \lg q$, let us define the following hash function:

$$\begin{array}{rccc} H_{\mathbf{A}}: & \{0,1\}^m & \to & \{0,1\}^n \\ & \mathbf{x} & \mapsto & \mathbf{x}^T \cdot \mathbf{A} \bmod q. \end{array}$$

- 1. Why finding a sufficiently "short" non-zero vector \mathbf{z} such that $\mathbf{z}^T \cdot \mathbf{A} = \mathbf{0}$ is enough to distinguish $D_{\text{LWE},\mathbf{A}}$ from the distribution $(\mathbf{A}, U(\mathbb{Z}_q^m))$? Define "short".
- 2. Show that H_A is *collision-resistant* under the LWE_A assumption.
- 3. Is it still a secure hash function if we let $H_{\mathbf{A}} : \mathbf{x} \mapsto \mathbf{x}^T \cdot \mathbf{A}$? (without the reduction modulo)

Exercise 3. [HMAC]

- In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
- 2. Before HMAC was invented, it was quite common to define a MAC by $Mac_k(m) = H^s(k \parallel m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgård transform.

Exercise 4. [Pedersen's hash function]

Pedersen's hash function is as follows:

- Given a security parameter *n*, algorithm Gen samples (G, g, q) where $G = \langle g \rangle$ is a cyclic group of cardinality *q*, a prime number. It then sets $g_1 = g$ and samples g_i uniformly in *G* for all $i \in \{2, ..., k\}$, where $k \ge 2$ is some parameter. Finally, it returns $(G, q, g_1, ..., g_k)$.
- The hash of message $M = (M_1, \ldots, M_k) \in (\mathbb{Z}/q\mathbb{Z})^k$ is $H(M) = \prod_{i=1}^k g_i^{M_i} \in G$.
- 1. Assume for this question that *G* is a subgroup of prime order *q* of $(\mathbb{Z}/p\mathbb{Z})^{\times}$, where p = 2q + 1 is prime. What is the compression factor in terms of *k* and *p*?

Definition 5. (Discrete Logarithm Problem (DLP)). *Given* G, g, and $h \in G$ where $G = \langle g \rangle$ is a cyclic group of cardinality q, prime number. The DLP asks for $x \in \mathbb{Z} \setminus q\mathbb{Z}$ such that $g^x \equiv h \mod q$. The problem is hard if no efficient adversary can find such x with non-negligible advantage.

- 2. Assume for this question that k = 2. Show that Pedersen's hash function is collision-resistant, under the assumption that the DLP is hard for *G*.
- 3. Same question as the previous one, with $k \ge 2$ arbitrary.