TD 7: Hash functions

Definition 1. A hash function is a pair of probabilistic polynomial-time algorithms $(G e n, H)$ satisfying the following:

- Gen is a probabilistic algorithm which takes as input a security parameter 1^{n} and outputs a key s. We assume that 1^{n} is implicit in s.
- There exists a polynomial l such that H takes as input a key s and a string $x \in\{0,1\}^{*}$ and outputs a string $H^{s}(x) \in\{0,1\}^{l(n)}$ (where n is the value of the security parameter implicit in s).
If H^{s} is defined only for inputs $x \in\{0,1\}^{l^{\prime}(n)}$ and $l^{\prime}(n)>l(n)$, then we say that $(G e n, H)$ is a fixed-length hash function for inputs of length $l^{\prime}(n)$.
Definition 2. The collision-finding game is defined as follows:

1. A keys is generated by running $\operatorname{Gen}\left(1^{n}\right)$
2. The adversary \mathcal{A} is given s and outputs x, x^{\prime} (if Π is a fixed-length hash function for inputs of length $l^{\prime}(n)$ then we require $\left.x, x^{\prime} \in\{0,1\}^{l^{\prime}(n)}\right)$.
3. \mathcal{A} wins (i.e., it finds a collision) if and only if $x \neq x^{\prime}$ and $H^{s}(x)=H^{s}\left(x^{\prime}\right)$.

Definition 3. A hash function $\Pi=(\operatorname{Gen}, H)$ is collision resistant if for all probabilistic polynomial-time adversaries \mathcal{A}, we have

$$
\operatorname{Pr}\left[\operatorname{HashColl} \mathcal{A}_{\mathcal{A}}(\Pi)\right]
$$

is negligible.

Exercise 1. [Collision resistance]

1. Let $(G e n, H)$ be a collision-resistant hash function. Is $(G e n, \widehat{H})$ defined by $\widehat{H}^{s}=\operatorname{def} H^{s}\left(H^{s}(x)\right)$ necessarily collision-resistant?
2. Let $\left(G e n, H_{1}\right)$ and $\left(\mathrm{Gen}^{\prime}, H_{2}\right)$ be a collision-resistant hash functions such that $H_{1}:=\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and $H_{1}:=\{0,1\}^{m} \rightarrow\{0,1\}^{l}$. Is (Gen, $\left.\widehat{H}\right)$ defined by $\widehat{H}^{\left(s_{1}, s_{2}\right)}={ }_{\operatorname{def}} H_{2}^{s_{2}}\left(H_{1}^{s_{1}}(x)\right)$ necessarily collisionresistant?

Exercise 2. [SIS]

Definition 4 (Learning with Errors). Let $\ell<k \in \mathbb{N}, n<m \in \mathbb{N}, q=2^{k}, B=2^{\ell}, \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\mathrm{LWE}, \mathbf{A}}=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $\mathbf{e} \hookleftarrow U\left(\left[-\frac{B}{2}, \frac{B}{2}\right]^{m} \cap \mathbb{Z}^{m}\right)$.
The $L W E_{\mathbf{A}}$ assumption states that, given suitable parameters k, ℓ, m, n, it is computationally hard to distinguish $D_{\text {LWE,A }}$ from the distribution $\left(\mathbf{A}, U\left(\mathbb{Z}_{q}^{m}\right)\right)$.

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ with $m>n \lg q$, let us define the following hash function:

$$
\begin{array}{rlcc}
H_{\mathbf{A}}:\{0,1\}^{m} & \rightarrow & \{0,1\}^{n} \\
\mathbf{x} & \mapsto & \mathbf{x}^{T} \cdot \mathbf{A} \bmod q .
\end{array}
$$

1. Why finding a sufficiently "short" non-zero vector \mathbf{z} such that $\mathbf{z}^{T} \cdot \mathbf{A}=\mathbf{0}$ is enough to distinguish $D_{\text {LWE,A }}$ from the distribution $\left(\mathbf{A}, U\left(\mathbb{Z}_{q}^{m}\right)\right)$? Define "short".
2. Show that $H_{\mathbf{A}}$ is collision-resistant under the $L W E_{\mathbf{A}}$ assumption.
3. Is it still a secure hash function if we let $H_{\mathbf{A}}: \mathbf{x} \mapsto \mathbf{x}^{T} \cdot \mathbf{A}$? (without the reduction modulo)

Exercise 3. [HMAC]

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
2. Before HMAC was invented, it was quite common to define a MAC by $\operatorname{Mac}_{k}(m)=H^{s}(k \| m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgård transform.

Exercise 4. [Pedersen's hash function]

Pedersen's hash function is as follows:

- Given a security parameter n, algorithm Gen samples (G, g, q) where $G=\langle g\rangle$ is a cyclic group of cardinality q, a prime number. It then sets $g_{1}=g$ and samples g_{i} uniformly in G for all $i \in\{2, \ldots, k\}$, where $k \geq 2$ is some parameter. Finally, it returns ($G, q, g_{1}, \ldots, g_{k}$).
- The hash of message $M=\left(M_{1}, \ldots, M_{k}\right) \in(\mathbb{Z} / q \mathbb{Z})^{k}$ is $H(M)=\prod_{i=1}^{k} g_{i}^{M_{i}} \in G$.

1. Assume for this question that G is a subgroup of prime order q of $(\mathbb{Z} / p \mathbb{Z})^{\times}$, where $p=2 q+1$ is prime. What is the compression factor in terms of k and p ?

Definition 5. (Discrete Logarithm Problem (DLP)). Given G, g, and $h \in G$ where $G=\langle g\rangle$ is a cyclic group of cardinality q, prime number. The DLP asks for $x \in \mathbb{Z} \backslash q \mathbb{Z}$ such that $g^{x} \equiv h \bmod q$. The problem is hard if no efficient adversary can find such x with non-negligible advantage.
2. Assume for this question that $k=2$. Show that Pedersen's hash function is collision-resistant, under the assumption that the DLP is hard for G.
3. Same question as the previous one, with $k \geq 2$ arbitrary.

