
M1 – Cryptography and Security (2018/2019) (ENS Lyon) O. Fawzi and D. Sintiari

TD 5: MACs and CCA Security

Exercise 0. [Homework discussion]

Exercise 1. [Malleability of CBC]

Let c be the CBC encryption of some message m ∈ X l , where X := {0, 1}n. You do not know m. Let
∆ ∈ X . Show how to modify the ciphertext c to obtain a new ciphertext c′ that decrypts to m′, where
m′[0] = m[0]⊕ ∆, and m′[i] = m[i] for i = 1, · · · , l − 1. That is, by modifying c appropriately, you can flip
bits of your choice in the first block of the decryption of c without affecting any of the other blocks.

Exercise 2. [MAC with verification oracle]

In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given
access to a MAC generation oracle Mac(k, .).

At each message query m, the challenger computes t ← Mac(k, m), returns t and updates the set of MAC
queries Q := Q ∪ {(t, m)}, which is initialized to Q := ∅. At the end of the game, the adversary outputs
a pair (m?, t?) and wins if: (i) Verify(k, m?, t?) = 1; and (ii) (m?, t?) 6∈ Q 1

We consider an even stronger definition where the adversary is additionally given access to a verification
oracle Verify(k, ., .). At each verification query, the adversary chooses a pair (m, t) and the challenger
returns the output of Verify(k, m, t) ∈ {0, 1}. In this context, the adversary wins if one of these verification
queries (m, t) satisfies: (i) Verify(k, m, t) = 1; and (ii) (m, t) 6∈ Q

Show that the verification oracle does not make the adversary any stronger. Namely, any strongly un-
forgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

Exercise 3. [CCA Security]

Recall the definition of CCA security given in the lecture. We define the scheme ”Encrypt and tag” by:
for a message m, independent keys k and k′, a CPA-secure encryption Enc and a secure MAC Sign, we let
c = Enc(k, m) and t = Sign(k′, m), and return (c, t). Is this scheme CCA-secure?

Exercise 4. [Authenticated Encryption]

Consider the following construction of symmetric encryption.

Gen(1λ): Choose a random key K1 ← U({0, 1}λ) for an IND-CPA secure symmetric encryption scheme
(Gen′,Enc′,Dec′). Choose a random key K0 ← U({0, 1}λ) for a MAC Π = (Gen,Mac,Verify). The
secret key is K = (K0, K1)

Enc(K, M): To encrypt M, do the following.

1. Compute c = Enc′(K1, M).

2. Compute t = Π.Mac(K0, c).

Return C = (t, c).

Dec(K, C): Return ⊥ if Π.Verify(K0, c, t) = 0. Otherwise, return M = Dec′(K1, c).
1In the definition of standard unforgeability under chosen-message attacks, condition (ii) is replaced by ∀(mi , ti) ∈ Q, M? 6= mi .

1

1. Show that the scheme is not IND-CCA secure if the MAC Π is only unforgeable (i.e., not strongly)
under chosen-message attacks.

2. Prove that the scheme is IND-CCA secure assuming that: (i) (Gen′,Enc′,Dec′) is IND-CPA-secure;
(ii) Π is strongly unforgeable under chosen-message attacks.

Exercise 5. [CBC-MAC]

Prove that the following modifications of CBC-MAC do not yield a secure fixed-length MAC:

1. Modify the following CBC-MAC (Figure 1) so that a random IV (rather than IV = 0) is used each
time a tag is computed (and the IV is output along with t`).

mt−1

K F

result

· · ·

m2

K F

IV = 0

m1

K F

Figure 1: CBC-MAC

2. Modify CBC-MAC so that all the outputs of F are output, rather than just the last one.

We now consider the following ECBC-MAC scheme, let F : K × X → X be a PRP, we define FECBC :
K2 × X≤L → X as in Figure 2, where k1 and k2 are two independent keys.
If the message length is not a multiple of the block length n, we add a pad to the last block: m =
m1| . . . |md−1|(md‖pad(m)).

3. Show that there exists a padding for which this scheme is not secure.

For the security of the scheme, the padding must be invertible, and in particular for any message m0 6= m1
we need to have pad(m0) 6= pad(m1). The ISO norm is to pad with 10 · · · 0, and if the message length is a
multiple of the block length, to add a new "dummy" block 10 · · · 0 of length n.

4. Explain why the scheme is not secure if this padding does not add a new block if the message length
is a multiple of the block length.

2

mt−1

K1

K2

F

F

result

· · ·

m2

K1 F

IV = 0

m1

K1 F

Figure 2: ECBC-MAC

3

