TD 4: CPA security and MACs

Exercise 1. [Security of CBC mode]
Suppose $\mathcal{E}=(E, D)$ is a block cipher defined over (K, \mathcal{X}) where $\mathcal{X}=\{0,1\}^{n}$. Let $N:=|\mathcal{X}|=2^{n}$. For any poly-bounded $l \geq 1$, we define a cipher $\mathcal{E}^{\prime}=\left(E^{\prime}, D^{\prime}\right)$, with a key space \mathcal{K}, message space $\mathcal{X} \leq l$, and ciphertext space $\mathcal{X} \leq l+1 ~ \backslash \mathcal{X}^{0}$; that is the ciphertext space consists of all nonempty sequences of at most $l+1$ data blocks. Encryption and decryption are defined as follows.

Encryption

for $k \in \mathcal{K}$ and $m \in \mathcal{X} \leq l$, with $v:=|m|$, we define

$$
\begin{aligned}
& E^{\prime}(k, m):= \\
& \text { compute } c \in \mathcal{X}^{v+1} \text { as follows: } \\
& \quad c[0] \stackrel{R}{\leftarrow}(\mathcal{X}) \\
& \text { for } j \leftarrow 0 \text { to } v-1 \\
& \quad c[j+1] \leftarrow E(k, c[j]) \oplus m[j] \\
& \text { output } c ;
\end{aligned}
$$

Decryption

for $k \in \mathcal{K}$ and $c \in \mathcal{X}{ }^{\leq l+1} \backslash \mathcal{X}^{0}$, with $v:=|c|-1$, we define

$$
\begin{aligned}
& D^{\prime}(k, c):= \\
& \quad \text { compute } m \in \mathcal{X}^{v} \text { as follows: } \\
& \quad \text { for } j \leftarrow 0 \text { to } v-1 \text { do } \\
& \quad m[j] \leftarrow D(k, c[j+1] \oplus c[j]) \\
& \text { output } m ;
\end{aligned}
$$

1. Prove the correctness of the cipher.
2. Prove that if $\mathcal{E}=(E, D)$ is a secure block cipher defined over $(\mathcal{K}, \mathcal{X})$, and $N:=|\mathcal{X}|$ is super-poly, then for any poly-bounded $l \geq 1$, the cipher \mathcal{E}^{\prime} described above is CPA-secure.
In particular, for every CPA adversary \mathcal{A} that attacks \mathcal{E}^{\prime} and makes at most Q queries to its challenger, there exists a BC (Block Cipher) adversary \mathcal{B} that attacks \mathcal{E}, such that:

$$
\operatorname{Adv}_{\mathcal{A}}^{C P A}\left(\mathcal{E}^{\prime}\right) \leq \frac{2 Q^{2} l^{2}}{N}+2 \cdot \operatorname{Adv}_{\mathcal{B}}^{B C}(\mathcal{E})
$$

Exercise 2. [The malleability of CBC mode]

Let c be the CBC encryption of some message $m \in \mathcal{X}^{l}$, where $\mathcal{X}:=\{0,1\}^{n}$. You do not know m. Let $\Delta \in \mathcal{X}$. Show how to modify the ciphertext c to obtain a new ciphertext c^{\prime} that decrypts to m^{\prime}, where $m^{\prime}[0]=m[0] \oplus \Delta$, and $m^{\prime}[i]=m[i]$ for $i=1, \cdots, l-1$. That is, by modifying c appropriately, you can flip bits of your choice in the first block of the decryption of c without affecting any of the other blocks.

Definition 1. A MAC system $\mathcal{I}=(S, V)$ is a pair of efficient algorithms, S and V, where

- S is a probabilistic (signing) algorithm, that given a key k, a message m, it produces a tag twhere $t \stackrel{R}{\leftarrow} S(k, m)$.
- V is a deterministic (verification) algorithm that given a key k, a tag t, it outputs accept or reject.
- It requires correctness property: for all keys k and all messages m;

$$
\operatorname{Pr}\{V(k, m, S(k, m))=\boldsymbol{a c c e p t}\}=1
$$

Definition 2. (MAC security) For a given $M A C \operatorname{system} \mathcal{I}=(S, V)$, defined over $\mathcal{K}, \mathcal{M}, \mathcal{T}$, and a given adversary \mathcal{A}, the attack game runs as follows:

- The challenger picks a random $k \stackrel{R}{\leftarrow} \mathcal{K}$.
- \mathcal{A} queries the challenger several times. For $i=1,2, \cdots$, the $i^{\text {th }}$ signing query is a message $m_{i} \in \mathcal{M}$. Given m_{i}, the challenger computes a tag $t_{i} \stackrel{R}{\leftarrow} S\left(k, m_{i}\right)$, and then gives t_{i} to \mathcal{A}.
- \mathcal{A} outputs a candidate forgery pair $(m, t) \in \mathcal{M} \times \mathcal{T}$ that is not among the signed pairs, i.e.,

$$
(m, t) \notin\left\{\left(m_{1}, t_{1}\right),\left(m_{2}, t_{2}\right), \cdots\right\}
$$

We say that \mathcal{A} wins the above game if (m, t) is a valid pair under k. Moreover, we define:

$$
A d v t_{\mathcal{A}}^{M A C}(\mathcal{I})=\operatorname{Pr}\{\mathcal{A} \text { wins }\}
$$

Finally, \mathcal{I} is a secure MAC, if for all efficient adversaries \mathcal{A}, the advantage of \mathcal{A} is negligible.

Exercise 3. [MAC and PRF]

Recall that a pseudo-random function (PRF) defined over $(\mathcal{K}, \mathcal{X}, \mathcal{Y})$ is an algorithm F that takes two inputs, a key $k \in \mathcal{K}$ and an input data block $x \in \mathcal{X}$, and outputs a value $y:=F(k, x)$. For a PRF F, we define we define the deterministic MAC system $\mathcal{I}=(S, V)$ derived from F as:

- $S(k, m):=F(k, m)$
- $V(k, m, t):=$ accept if $F(k, m)=t$, and reject otherwise

We note that a secure PRF implies a secure deterministic MAC (proof ignored).

1. Give a construction of a secure deterministic MAC which is not a pseudo-random function.
2. Let F be a secure pseudorandom function (PRF). We consider the following message authentication code (MAC), for messages of length $2 n$: The shared key is a key $k \in\{0,1\}^{n}$ of the PRF F; To authenticate a message $m_{1} \| m_{2}$ with $m_{1}, m_{2} \in\{0,1\}^{n}$, compute the tag $t=\left(F\left(k, m_{1}\right), F\left(k,\left(F\left(k, m_{2}\right)\right)\right)\right.$. Is it a secure MAC?
3. Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a secure PRF. Consider the following MAC. To authenticate a message $m=m_{1}\left\|m_{2}\right\| \ldots \| m_{d}$ where $m_{i} \in\{0,1\}^{n}$ for all i, using a key k, compute

$$
t=F\left(k, m_{1}\right) \oplus \ldots \oplus F\left(k, m_{d}\right) .
$$

Is it a secure MAC?

Exercise 4. [MAC with verification oracle]

In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given access to a MAC generation oracle $\operatorname{Mac}(k,$.$) .$
At each message query m, the challenger computes $t \leftarrow \operatorname{Mac}(k, m)$, returns t and updates the set of MAC queries $Q:=Q \cup\{(t, m)\}$, which is initialized to $Q:=\varnothing$. At the end of the game, the adversary outputs a pair $\left(m^{\star}, t^{\star}\right)$ and wins if:
i Verify $\left(k, m^{\star}, t^{\star}\right)=1$
ii $\left(m^{\star}, t^{\star}\right) \notin Q^{1}$

We consider an even stronger definition where the adversary is additionally given access to a verification oracle Verify $(k, \ldots$.$) . At each verification query, the adversary chooses a pair (m, t)$ and the challenger returns the output of $\operatorname{Verify}(k, m, t) \in\{0,1\}$. In this context, the adversary wins if one of these verification queries (m, t) satisfies:
i Verify $(k, m, t)=1$
ii $(m, t) \notin Q$

Show that the verification oracle does not make the adversary any stronger. Namely, any strongly unforgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

[^0]
[^0]: ${ }^{1}$ In the definition of standard unforgeability under chosen-message attacks, condition (ii) is replaced by $\forall\left(m_{i}, t_{i}\right) \in Q, M^{\star} \neq m_{i}$.

