
M1 – Cryptography and Security (2018/2019) (ENS Lyon) O. Fawzi and D. Sintiari

TD 4: CPA security and MACs

Exercise 1. [Security of CBC mode]

Suppose E = (E, D) is a block cipher defined over (K,X) where X = {0, 1}n. Let N := |X | = 2n. For
any poly-bounded l ≥ 1, we define a cipher E ′ = (E′, D′), with a key space K, message space X≤l , and
ciphertext space X≤l+1\X 0; that is the ciphertext space consists of all nonempty sequences of at most l + 1
data blocks. Encryption and decryption are defined as follows.

Encryption

for k ∈ K and m ∈ X≤l , with v := |m|, we define
E′(k, m) :=

compute c ∈ X v+1 as follows:

c[0] R←− (X)
for j← 0 to v− 1

c[j + 1]← E(k, c[j])⊕m[j]
output c;

Decryption

for k ∈ K and c ∈ X≤l+1\X 0, with v := |c| − 1, we define
D′(k, c) :=

compute m ∈ X v as follows:
for j← 0 to v− 1 do

m[j]← D(k, c[j + 1]⊕ c[j])
output m;

1. Prove the correctness of the cipher.

2. Prove that if E = (E, D) is a secure block cipher defined over (K,X), and N := |X | is super-poly,
then for any poly-bounded l ≥ 1, the cipher E ′ described above is CPA-secure.

In particular, for every CPA adversaryA that attacks E ′ and makes at most Q queries to its challenger,
there exists a BC (Block Cipher) adversary B that attacks E , such that:

AdvCPA
A (E ′) ≤ 2Q2l2

N
+ 2 ·AdvBC

B (E)

Exercise 2. [The malleability of CBC mode]

Let c be the CBC encryption of some message m ∈ X l , where X := {0, 1}n. You do not know m. Let
∆ ∈ X . Show how to modify the ciphertext c to obtain a new ciphertext c′ that decrypts to m′, where
m′[0] = m[0]⊕ ∆, and m′[i] = m[i] for i = 1, · · · , l − 1. That is, by modifying c appropriately, you can flip
bits of your choice in the first block of the decryption of c without affecting any of the other blocks.

1

Definition 1. A MAC system I = (S, V) is a pair of efficient algorithms, S and V, where

• S is a probabilistic (signing) algorithm, that given a key k, a message m, it produces a tag t where t R←− S(k, m).

• V is a deterministic (verification) algorithm that given a key k, a tag t, it outputs accept or reject.

• It requires correctness property: for all keys k and all messages m;

Pr{V(k, m, S(k, m)) = accept} = 1

Definition 2. (MAC security) For a given MAC system I = (S, V), defined over K,M, T , and a given adversary
A, the attack game runs as follows:

• The challenger picks a random k R←− K.

• A queries the challenger several times. For i = 1, 2, · · · , the ith signing query is a message mi ∈ M. Given

mi, the challenger computes a tag ti
R←− S(k, mi), and then gives ti to A.

• A outputs a candidate forgery pair (m, t) ∈ M×T that is not among the signed pairs, i.e.,

(m, t) /∈ {(m1, t1), (m2, t2), · · · }

We say that A wins the above game if (m, t) is a valid pair under k. Moreover, we define:

AdvtMAC
A (I) = Pr{A wins}

Finally, I is a secure MAC, if for all efficient adversaries A, the advantage of A is negligible.

Exercise 3. [MAC and PRF]

Recall that a pseudo-random function (PRF) defined over (K,X ,Y) is an algorithm F that takes two inputs,
a key k ∈ K and an input data block x ∈ X , and outputs a value y := F(k, x). For a PRF F, we define we
define the deterministic MAC system I = (S, V) derived from F as:

• S(k, m) := F(k, m)

• V(k, m, t) := accept if F(k, m) = t, and reject otherwise

We note that a secure PRF implies a secure deterministic MAC (proof ignored).

1. Give a construction of a secure deterministic MAC which is not a pseudo-random function.

2. Let F be a secure pseudorandom function (PRF). We consider the following message authentication
code (MAC), for messages of length 2n: The shared key is a key k ∈ {0, 1}n of the PRF F; To
authenticate a message m1‖m2 with m1, m2 ∈ {0, 1}n, compute the tag t = (F(k, m1), F(k, (F(k, m2))).
Is it a secure MAC?

3. Let F : {0, 1}n × {0, 1}n → {0, 1}n be a secure PRF. Consider the following MAC. To authenticate a
message m = m1‖m2‖ . . . ‖md where mi ∈ {0, 1}n for all i, using a key k, compute

t = F(k, m1)⊕ . . .⊕ F(k, md).

Is it a secure MAC?

2

Exercise 4. [MAC with verification oracle]

In the notion of existential strong unforgeability under chosen-message attacks, the adversary is given
access to a MAC generation oracle Mac(k, .).

At each message query m, the challenger computes t ← Mac(k, m), returns t and updates the set of MAC
queries Q := Q ∪ {(t, m)}, which is initialized to Q := ∅. At the end of the game, the adversary outputs
a pair (m?, t?) and wins if:

i Verify(k, m?, t?) = 1

ii (m?, t?) 6∈ Q 1

We consider an even stronger definition where the adversary is additionally given access to a verification
oracle Verify(k, ., .). At each verification query, the adversary chooses a pair (m, t) and the challenger
returns the output of Verify(k, m, t) ∈ {0, 1}. In this context, the adversary wins if one of these verification
queries (m, t) satisfies:

i Verify(k, m, t) = 1

ii (m, t) 6∈ Q

Show that the verification oracle does not make the adversary any stronger. Namely, any strongly un-
forgeable MAC remains strongly unforgeable when the adversary has a verification oracle.

1In the definition of standard unforgeability under chosen-message attacks, condition (ii) is replaced by ∀(mi , ti) ∈ Q, M? 6= mi .

3

