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TD 1 : Play with definitions

Exercise 1. [Perfect security]

Let (E, D) be a cipher over (K,M, C). Recall the definition of "perfect security" that was given in class.
We are going to see that perfect security guarantees that the ciphertext reveals nothing about the message.
Now consider a random experiment in which k and m are random variables, such that:

• k is uniformly distributed over K

• m is distributed overM, and

• k and m are independent

Define the random variable c = E(k, m). Prove that:

• if (E, D) is perfectly secure, then c and m are independent;

• conversely, if c and m are independent, and each message in M occurs with nonzero probability,
then (E, D) is perfectly secure.

Exercise 2. [Variable length OTP is not secure]

A variable length one-time pad is a cipher (E, D), where the keys are bit strings of some fixed length L, while
messages and ciphertexts are variable length bit strings, of length at most L. Thus, (E, D) is defined over
(K,M, C), where

K := {0, 1}L andM := C = {0, 1}≤L

for some parameter L. Here, {0, 1}≤L denotes the set of all bit strings of length at most L (including the
empty string). For a key k ∈ {0, 1}L and a message m ∈ {0, 1}≤L of length l, the encryption function is
defined as follows:

E(k, m) := k[0 . . l − 1]⊕m

Provide a counter-example showing that the variable length OTP is not secure.

Exercise 3. [Distinguishability]

We consider two distributions P0 and P1 over {0, 1}L.

1. Recall the definitions that were given in class for the notions of distinguisher and the advantage of a
distinguisher. We say that P0 and P1 are ε-indistinguishable if for all distinguishers, the advantage is
at most ε. Show that if P0 and P1 are 0-indistinguishable, then P0 = P1.

We are now going to give other slightly different definitions of ε-indistinguishability. The first one is based
on the statistical distance.

∆(P0, P1) =
1
2 ∑

a∈{0,1}L

|P0(a)− P1(a)|.

2. Show that ∆ satisfies the usual properties of a distance.

It will be useful in what follows to introduce random variables: let X have distribution P0 and Y have
distribution P1. We will write ∆(X, Y) for ∆(P0, P1).

3. Show that for any function f we have, ∆( f (X), f (Y)) ≤ ∆(X, Y).
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4. Show that ∆(X, Y) = maxT⊆{0,1}L |Pr[X ∈ T]− Pr[Y ∈ T]|

5. Show that P0 and P1 are ε-indistinguishable if and only if ∆(X, Y) ≤ ε.

Now, we consider a third definition of ε-indistinguishability. For this consider the following game.

C A
sample b←↩ U(0, 1)

sample x ←↩ Pb
send x to A

compute a bit b′

send b′ to C
If b = b′, say “Win”, else say “Lose”.

6. Show that there is a strategy for A such that the winning probability is 1
2 + 1

2 ∆(P0, P1). Moreover,
show that for any strategy A, the winning probability is at most 1

2 + 1
2 ∆(P0, P1). As such we could

also define ε-indistinguishability of P0 and P1 by saying that the winning probability for this game
is at most 1

2 + 1
2 ε.

In cryptography, we will restrict the adversary A to be efficient. The distributions P0 and P1 are said to
be ε-computationally-indistinguishable if all efficient distinguishers A have an advantage of at most ε. Note
that we could equivalently define it by requiring that any adversary in the game defined above has a
winning probability of at most 1

2 + 1
2 ε.

7. Under reasonable assumptions, there exists functions G : {0, 1}l → {0, 1}2l , such that G(U({0, 1}l))

and U({0, 1}2l) are ε-computationally indistinguishable for ε ≤ 1
10 (in fact, we have ε that is smaller

than any inverse polynomial in l). Show that there can be a large gap between computational
indistinguishability and indistinguishability. More precisely, show that for large enough l, there is a
distinguisher that has an advantage gets close to 1.

Exercise 4. [More on encryption scheme]

1. (Multiplicative OTP) We may also define a “multiplication mod p” variation of the one-time pad.
This is a cipher (E, D), defined over (K,M, C), where K := M := C := {1, . . . , p− 1}, where p is a
prime. Encryption and decryption are defined as follows:

E(k, m) := k×m mod p and D(k, c) := k−1 × c mod p

Here, k−1 denotes the multiplicative inverse of k modulo p. Verify the correctness property for this
cipher and prove that it is perfectly secure.

2. (A good substitution cipher) Consider a variant of the substitution cipher (E, D) where every symbol
of the message is encrypted using an independent permutation. That is, let M = C = ΣL for some
a finite alphabet of symbols Σ and some L. Let the key space be K = SL where S is the set of all
permutations on Σ. The encryption algorithm E(k, m) is defined as

E(k, m) :=
(
k[0](m[0]), k[1](m[1]), . . . , k[L− 1](m[L− 1])

)
Show that (E, D) is perfectly secure.

3. (Chain encryption) Let (E, D) be a perfectly secure cipher defined over (K,M, C) where K = M.
Let (E′, D′) be a cipher where encryption is defined as

E′
(
(k1, k2), m

)
:= E

(
(k1, k2), E(k2, m)

)
Show that E′ is perfectly secure.
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