TD 1 : Play with definitions

Exercise 1. [*Perfect security*]

Let (E, D) be a cipher over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$. Recall the definition of "perfect security" that was given in class. We are going to see that perfect security guarantees that the ciphertext reveals nothing about the message. Now consider a random experiment in which **k** and **m** are random variables, such that:

- **k** is uniformly distributed over \mathcal{K}
- **m** is distributed over \mathcal{M} , and
- **k** and **m** are independent

Define the random variable c = E(k, m). Prove that:

- if (*E*, *D*) is perfectly secure, then **c** and **m** are independent;
- conversely, if **c** and **m** are independent, and each message in \mathcal{M} occurs with nonzero probability, then (E, D) is perfectly secure.

Exercise 2. [Variable length OTP is not secure]

A *variable length one-time pad* is a cipher (E, D), where the keys are bit strings of some fixed length *L*, while messages and ciphertexts are variable length bit strings, of length at most *L*. Thus, (E, D) is defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, where

$$\mathcal{K} := \{0,1\}^L$$
 and $\mathcal{M} := \mathcal{C} = \{0,1\}^{\leq L}$

for some parameter *L*. Here, $\{0,1\}^{\leq L}$ denotes the set of all bit strings of length at most *L* (including the empty string). For a key $k \in \{0,1\}^{L}$ and a message $m \in \{0,1\}^{\leq L}$ of length *l*, the encryption function is defined as follows:

$$E(k,m) := k[0 \dots l-1] \oplus m$$

Provide a counter-example showing that the variable length OTP is not secure.

Exercise 3. [*Distinguishability*]

We consider two distributions P_0 and P_1 over $\{0, 1\}^L$.

1. Recall the definitions that were given in class for the notions of *distinguisher* and the advantage of a distinguisher. We say that P_0 and P_1 are ϵ -indistinguishable if for all distinguishers, the advantage is at most ϵ . Show that if P_0 and P_1 are 0-indistinguishable, then $P_0 = P_1$.

We are now going to give other slightly different definitions of ϵ -indistinguishability. The first one is based on the statistical distance.

$$\Delta(P_0, P_1) = \frac{1}{2} \sum_{a \in \{0,1\}^L} |P_0(a) - P_1(a)|.$$

2. Show that Δ satisfies the usual properties of a distance.

It will be useful in what follows to introduce random variables: let *X* have distribution P_0 and *Y* have distribution P_1 . We will write $\Delta(X, Y)$ for $\Delta(P_0, P_1)$.

3. Show that for any function *f* we have, $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$.

- 4. Show that $\Delta(X, Y) = \max_{T \subseteq \{0,1\}^L} |\Pr[X \in T] \Pr[Y \in T]|$
- 5. Show that P_0 and P_1 are ϵ -indistinguishable if and only if $\Delta(X, Y) \leq \epsilon$.

Now, we consider a third definition of ϵ -indistinguishability. For this consider the following game.

${\mathcal C}$	\mathcal{A}
sample $b \leftrightarrow U(0,1)$	
sample $x \leftrightarrow P_b$	
send x to \mathcal{A}	
	compute a bit b'
	send b' to C
If $b = b'$, say "Win", else say "Lose".	

6. Show that there is a strategy for A such that the winning probability is $\frac{1}{2} + \frac{1}{2}\Delta(P_0, P_1)$. Moreover, show that for any strategy A, the winning probability is at most $\frac{1}{2} + \frac{1}{2}\Delta(P_0, P_1)$. As such we could also define ϵ -indistinguishability of P_0 and P_1 by saying that the winning probability for this game is at most $\frac{1}{2} + \frac{1}{2}\epsilon$.

In cryptography, we will restrict the adversary A to be efficient. The distributions P_0 and P_1 are said to be ϵ -computationally-indistinguishable if all *efficient* distinguishers A have an advantage of at most ϵ . Note that we could equivalently define it by requiring that any adversary in the game defined above has a winning probability of at most $\frac{1}{2} + \frac{1}{2}\epsilon$.

7. Under reasonable assumptions, there exists functions $G : \{0,1\}^l \to \{0,1\}^{2l}$, such that $G(U(\{0,1\}^l))$ and $U(\{0,1\}^{2l})$ are ϵ -computationally indistinguishable for $\epsilon \leq \frac{1}{10}$ (in fact, we have ϵ that is smaller than any inverse polynomial in l). Show that there can be a large gap between computational indistinguishability and indistinguishability. More precisely, show that for large enough l, there is a distinguisher that has an advantage gets close to 1.

Exercise 4. [More on encryption scheme]

1. (*Multiplicative OTP*) We may also define a "multiplication mod p" variation of the one-time pad. This is a cipher (E, D), defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, where $\mathcal{K} := \mathcal{M} := \mathcal{C} := \{1, ..., p - 1\}$, where p is a prime. Encryption and decryption are defined as follows:

$$E(k,m) := k \times m \mod p$$
 and $D(k,c) := k^{-1} \times c \mod p$

Here, k^{-1} denotes the multiplicative inverse of *k* modulo *p*. Verify the correctness property for this cipher and prove that it is perfectly secure.

2. (A good substitution cipher) Consider a variant of the substitution cipher (E, D) where every symbol of the message is encrypted using an independent permutation. That is, let $\mathcal{M} = \mathcal{C} = \Sigma^L$ for some a finite alphabet of symbols Σ and some L. Let the key space be $\mathcal{K} = S^L$ where S is the set of all permutations on Σ . The encryption algorithm E(k, m) is defined as

$$E(k,m) := (k[0](m[0]), k[1](m[1]), \dots, k[L-1](m[L-1]))$$

Show that (E, D) is perfectly secure.

3. (*Chain encryption*) Let (E, D) be a perfectly secure cipher defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$ where $\mathcal{K} = \mathcal{M}$. Let (E', D') be a cipher where encryption is defined as

$$E'((k_1,k_2),m) := E((k_1,k_2),E(k_2,m))$$

Show that E' is perfectly secure.