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Motivating example
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Part 1: System of linear
equations

(We sometime call it “linear system”)
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Learning objectives
After this lecture, you should be able to:

1. analyze the components of a system of linear equations;

2. verify whether a given set is a solution of a linear system;

3. identify a homogeneous and non-homogeneous linear system;

4. formulate the coefficient matrix and augmented matrix of a given
linear system;

5. showing that elementary row system gives an equivalent linear
system;

6. analyze the geometric interpretation of a linear system with 1, 2, or
3 variables;

7. apply the elimination and substitution algorithms to solve a linear
system;

8. explain the concept of linear system written in triangular matrix or
in echelon form.

5 / 42 c© Dewi Sintiari/CS Undiksha



Terminology and notation (1)

Given unknowns variables x1, x2, . . . , xn, a linear equation on the
variables is defined as:

a1x1 + a2x2 + · · ·+ anxn = b (1)

where a1, a2, . . . , an, b ∈ R (this can be replaced by another field).

A solution of equation (1) is a list of values for the unknowns, or a
vector u in Rn.

x1 = r1, x2 = r2, . . . , xn = rn or u = (r1, r2, . . . , rn)

This means that the following is correct:

a1r1 + a2r2 + · · ·+ anrn = b

In this case, we say that u satisfies equation (1).
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Terminology and notation (2)

In equation (1):

a1x1 + a2x2 + · · ·+ anxn = b

We say that:

• the equation is written in the standard form

• the constant ak is the coefficient of xk
• b is the constant term of the equation

Note: If n is small, we use different letters to denote the variables,
instead of using indexing.
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Example: how many solutions are there?

Given an equation:
2x + 3y − z = 4

Can you find a solution for the equation?

How many solutions that you can find?
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System of linear equations

A system of linear equations is a list of linear equations:
L1, L2, . . . , Lm with the same variables x1, x2, . . . , xn.

a11x1 + a12x2 + · · ·+ a1nxn = b1 (1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

am1x1 + am2x2 + · · ·+ amnxn = bm (4)

where aij and bi are constants.

• The system of linear equations is written in standard form

• The system is called an m × n system

• aij is the coefficient of variable xj in the equation Li
• the number bi is the constant of the equation Li

9 / 42 c© Dewi Sintiari/CS Undiksha



What does the word “linear” mean???
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Solution of “system of linear equations”

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

A solution of the system is a list of values for the unknowns or a
vector u in Rn.
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Example: verifying solution of a linear system

Given the following system of linear equations:
x1 + x2 + 4x3 + 3x4 = 5

2x1 + 3x2 + x3 − 2x4 = 1

x1 + 2x2 − 5x3 + 4x4 = 3

• What is the value of m and n in the system?

• Determine whether the following are solutions of the system!

1. u = (−8, 6, 1, 1)
2. v = (−10, 5, 1, 2)
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Part 2: Types of system of
linear equations
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Augmented and coefficient matrices of a system

The system of linear equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

can be written in matrix form:
a11x1 a12x2 · · · a1nxn
a21x1 a22x2 · · · a2nxn
· · ·

am1x1 am2x2 · · · amnxn

 =


b1
b2
· · ·
bm



a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
am1 am2 · · · amn



x1
x2
· · ·
xm

 =


b1
b2
· · ·
bm


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Augmented and coefficient matrices of a system


a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
am1 am2 · · · amn

 and


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
· · ·
am1 am2 · · · amn bm


• the left matrix is called the coefficient matrix of the system;

• the right matrix is called the augmented matrix of the system.

Furthermore, the vector 
b1
b2
...
bm


is called the constant vector (or constant matrix) of the system.
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Example: augmented matrix and coefficient matrix

Given the following system of equations:
x1 + x2 + 4x3 + 3x4 = 5

2x1 + 3x2 + x3 − 2x4 = 1

x1 + 2x2 − 5x3 + 4x4 = 3

The coefficient matrix and the augmented matrix are as follows:1 1 4 3
2 3 1 −2
1 2 −5 4

 and

1 1 4 3 5
2 3 1 −2 1
1 2 −5 4 3


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Homogeneous & non-homogeneous linear system

For the given system:
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
· · ·
am1 am2 · · · amn bm

 and


a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
am1 am2 · · · amn



It is called homogeneous if bi = 0, ∀i . Otherwise, it is called
non-homogeneous.

Every homogeneous linear system always has a solution. Can you
guess what it is?
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Degenerate and non-degenerate linear equations

A linear equation is degenerate if all coefficients are zero

0x1 + 0x2 + · · ·+ 0xn = b

Can you guess, what is the condition s.t. the linear equation
has a solution?

• If b 6= 0, then the equation has no solution.

• If b = 0, then every vector u = (r1, r2, . . . , rn) in Rn is a
solution.
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Degenerate linear equations

Theorem
Let L be a system of linear equations that contains a degenerate
equation L, with constant b.

1. If b 6= 0, then the system L has no solution.

2. If b = 0, then L may be deleted from L without changing the
solution set of L.
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Leading unknown in a nondegenerate linear equation

Given a non-degenerate linear equation L.

• What can you say about the coefficients of L?

L has at least one non-zero coefficient

Example

The following are non-degenerate linear equations.

0x1 + 0x2 + 5x3 + 6x4 + 0x5 + 8x6 = 7 and 0x + 2y − 4z = 5

The zero coefficients are usually omitted.

5x3 + 6x4 + 8x6 = 7 and 2y − 4z = 5
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Part 3: Elementary row
operations
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Linear combination

Given:

a11x1 + a12x2 + · · ·+ a1nxn = b1 (1)

a21x1 + a22x2 + · · ·+ a2nxn = b2 (2)

· · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

am1x1 + am2x2 + · · ·+ amnxn = bm (4)

Multiply the m equations by constants c1, c2, . . . , cm:

(c1a11+· · ·+cmam1)x1+· · ·+(c1a1n+· · ·+cmamn)xn = c1b1+· · ·+cmbm

This is a linear combination of the equations in the system.
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Example
Given a linear system:

x1 + x2 + 4x3 + 3x4 = 5

2x1 + 3x2 + x3 − 2x4 = 1

x1 + 2x2 − 5x3 + 4x4 = 3

Then:

3L1 : 3x1 + 3x2 + 12x3 + 9x4 = 15

−2L2 : − 4x1 − 6x2 − 2x3 + 4x4 = −2

4L1 : 4x1 + 8x2 − 20x3 + 16x4 = 12

(Sum)L : 3x1 + 5x2 − 10x3 + 29x4 = 25

• L is a linear combination of L1, L2, and L3

• Is u = (−8, 6, 1, 1) a solution of the system?

• Is u = (−8, 6, 1, 1) a solution of the linear combination?

What can you conclude?
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Equivalent systems

Theorem
Given two systems of linear equations, say L1 and L2. They have
the same solutions iff each equation in L1 is a linear combination
of the equations in L2.

Definition
Two systems of linear equations are equivalent if they have the
same solutions.
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Elementary operations

Given a system of linear equations L1, L2, . . . , Lm. The following
operations are called elementary operations.

• [E1] Interchange two of the equations

Interchange Li and Lj or Li ↔ Lj

• [E2] Replace an equation by a nonzero multiple of itself.

Replace Li by kLi or kLi → Li

• [E3] Replace an equation by the sum of a multiple of
another equation and itself.

Replace Lj by kLi + Lj or kLi + Lj → Lj
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Theorem
Given a system L. Let M be the system obtained from L by a
finite sequence of elementary operations.

Then M and L have the same solutions.

Note: Sometimes E2 and E3 can be applied in one step:

[E] Replace equation Lj by kLi + k ′Lj (where k, k ′ 6= 0)

kLi + k ′Lj → Lj

How to find a solution of a linear equations system?

• Use elementary operations to transform the given system into
an equivalent system whose solution can be easily obtained

This is called Gaussian Elimination (will be discussed later).
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Part 4: Small square systems
of linear equations
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Linear equation in one variable

Example

Solve the following linear system of one variable:

• 4x − 1 = x + 6

• 2x − 5− x = x + 3

• 4 + x − 3 = 2x + 1− x

What can you conclude?

Theorem
Given the system of unique linear equation ax = b.

1. If a 6= 0, then x = b
a is a unique solution of the system.

2. If a = 0, but b 6= 0, then the system has no solution.

3. If a = 0 and b = 0, then every scalar k is a solution of ax = b.
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Example

Example

Solve the following linear system of one variable:

• 4x − 1 = x + 6 (Theorem 7 (1))
In standard form: 3x = 7. Then x = 7

3 is the unique solution.

• 2x − 5− x = x + 3 (Theorem 7 (2))
In standard form: 0x = 8. The equation has no solution.

• 4 + x − 3 = 2x + 1− x (Theorem 7 (3))
In standard form: 0x = 0. Then every scalar k is a solution.

29 / 42 c© Dewi Sintiari/CS Undiksha



System of two linear equations in two variables

Given a system of two non-degenerate linear equations in two
variables:

A1x + B1y = C1

A2x + B2y = C2

Example

Solve the following system of linear equations:

{
L1 : x − y = −4

L2 : 3x + 2y = 12

{
L1 : x + 3y = 3

L2 : 2x + 6y = −8

{
L1 : x + 2y = 4

L2 : 2x + 4y = 8

What can you conclude?

30 / 42 c© Dewi Sintiari/CS Undiksha



The number of solutions of (2× 2)-system

1. The system has exactly one solution.

L1 : x − y = −4

L2 : 3x + 2y = 12

2. The system has no solution.

L1 : x + 3y = 3

L2 : 2x + 6y = −8

3. The system has an infinite number of solutions.

L1 : x + 2y = 4

L2 : 2x + 4y = 8
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Geometric interpretation

(a) Exactly one
solution (b) No solution

(c) Infinitely many
solution
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1. System with exactly one solution

• Given:

A1x + B1y = C1

A2x + B2y = C2

• Both lines have distinct slopes

A1

A2
6= B1

B2
or A1B2 − A2B1 6= 0
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2. System with no solution
• Given:

A1x + B1y = C1

A2x + B2y = C2

• Both lines are parallel (have the same slope)

A1

A2
=

B1

B2
6= C1

C2
here A1B2 − A2B1 = 0
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3. System with infinitely many solutions
• Given:

A1x + B1y = C1

A2x + B2y = C2

• Both lines have the same slopes and same y -intercepts

A1

A2
=

B1

B2
=

C1

C2
here A1B2 − A2B1 = 0
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Recap

• The system has exactly one solution when A1B2 − A2B1 6= 0

• The system has no solution of infinitely many solutions when
A1B2 − A2B1 = 0

The value A1B2 − A2B1 is called determinant of order two∣∣∣∣A1 B1

A2 B2

∣∣∣∣
Q: Can you relate the solution of system of linear equations to
determinant?

Remark: A system has a unique solution iff the determinant of its
coefficients is not zero.
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The number of solutions of (3× 3)-system
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Example 1: unique solution

 1 1 1 0
2 3 1 1
3 1 2 1

 Gaussian elimination−−−−−−−−−−−→

 1 1 1 0
0 1 −1 1
0 0 1 1


from which we can derive the set of solution:

x1 = 1, x2 = 0, x3 = −1
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Example 2: infinitely many solution

 1 1 2 4
2 −1 1 2
1 2 3 6

 Gaussian elimination−−−−−−−−−−−→

 1 1 2 4
0 1 1 2
0 0 0 0


From the last row, we can derive the equation:

0x1 + 0x2 + 0x3 = 0

which can be satisfied by many value of x . The solution can be written in
parametric form:

• Let x3 = k, with k ∈ R

• Then x2 = 2− k and x1 = 4− x2 − 2x3 = 4− (2− k)− 2k = 2− k

This means that there are an infinitely many solutions, because there are

infinitely many possible values of k .
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Example 3: no solution

 1 1 2 4
2 −1 1 2
1 2 3 7

 Gaussian elimination−−−−−−−−−−−→

 1 1 2 4
0 1 1 2
0 0 0 1


From the last row, we can derive the equation:

0x1 + 0x2 + 0x3 = 1 (1)

Clearly, no possible value of x1, x2, x3 ∈ R that can satisfy equation (1).
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What about a system with more than 3 variables?

Remark

• For a linear system with more than 3 variables, it’s hard to
interpret it geometrically.

• However we can check the possible number of solutions by
looking at the shape of the reduced echelon form.

Figure: Left (unique solution), middle (many solutions), right (no
solution) — source: lecture notes of Rinaldi Munir, ITB
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to be continued...
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