Linear Algebra
 [KOMS120301] - 2023/2024

6.1 - Inverses of matrices

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha
Week 6 (October 2023)

Learning objectives

After this lecture, you should be able to:

1. investigate if a matrix inverse exists;
2. compute the inverse of a small size matrix (if exists);
3. compute the inverse of an $n \times n$ matrix (if exists);
4. explain the concepts of minor, cofactor, adjoint;
5. explain the properties of matrix inverse;
6. analyze if a matrix is orthogonal;
7. analyze if a set of vectors is orthonormal.

Part 1: Inverse of matrices

Inverse

A square matrix A is said to be invertible or nonsingular if $\exists B$ s.t.:

$$
A B=B A=I \quad \text { where } I \text { is the identity matrix }
$$

Note: Such a matrix B is unique, and it is called the inverse of A, and is denoted by A^{-1}. The relation of A and B is symmetric:

If B is the inverse of A, then A is the inverse of B, i.e.

$$
\left(A^{-1}\right)^{-1}=A
$$

Example
Let $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$ Then

$$
A B=\left[\begin{array}{cc}
6-5 & -10+10 \\
3-3 & -5+6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Why do we need to find inverse of a matrix?

1. 'Primarily, "division" does not exist for matrices, instead, we do "inverse".

Given a matrix A and B such that $B=A X$.
How do we find $X ? \Rightarrow X=B A^{-1}$
2. Applications:

- solving a system of linear equations;
- used to encrypt/decrypt message codes;
- etc.

How to compute the inverse of 2×2 matrices?

$$
\text { Let } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text {, what is } A^{-1} \text { ? }
$$

Let $A^{-1}=\left[\begin{array}{ll}x_{1} & x_{2} \\ y_{1} & y_{2}\end{array}\right]$. We have:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
a x_{1}+b y_{1} & a x_{2}+b y_{2} \\
c x_{1}+d y_{1} & c x_{2}+d y_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

We solve the linear system:

$$
\left\{\begin{array} { l }
{ a x _ { 1 } + b y _ { 1 } = 1 } \\
{ c x _ { 1 } + d y _ { 1 } = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
a x_{2}+b y_{2}=0 \\
c x_{2}+d y_{2}=1
\end{array}\right.\right.
$$

Inverse of 2×2 matrices

It gives:

$$
x_{1}=\frac{d}{a d-b c}, \quad y_{1}=\frac{-c}{a d-b c}, \quad x_{2}=\frac{-b}{a d-b c}, \quad y_{2}=\frac{a}{a d-b c}
$$

Note that $a d-b c=|A|$ (the determinant of A).
When $|A| \neq 0$, the values x_{1}, y_{1}, x_{2}, and y_{2} exist.
Hence,

$$
A^{-1}=\left[\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right]=\left[\begin{array}{cc}
d /|A| & -b /|A| \\
-c /|A| & a /|A|
\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Inverse of 2×2 matrices

Conclusion:

$$
A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

When $|A| \neq 0$, the inverse of a 2×2 matrix A may be obtained from A as follows:

1. Interchange the two elements on the diagonal (a and d);
2. Take the negatives of the other two elements (b and c);
3. Multiply the resulting matrix by $\frac{1}{|A|}$ or, equivalently, divide each element by $|A|$.

Note: If $|A|=0$, then A is not invertible.

Example

Find the inverse of $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$ and $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$

$$
|A|=2(5)-3(4)=10-12=-2
$$

Since $|A| \neq 0$, then A is invertible.

$$
A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
5 & -3 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
-\frac{5}{2} & \frac{3}{2} \\
2 & -1
\end{array}\right]
$$

Furthermore, $|B|=1(6)-3(2)=0$, so B is not invertible.

Part 2: Computing inverse from adjoint

Inverse of $n \times n$ matrices

Note:

If A is an $n \times n$ matrices, A^{-1} can be obtained as above, by finding the solution of the $n \times n$ linear system equations.

This is not so practical to be solved using the substitution/elimination method. A method will be discussed later.

Review on minors and cofactors

Let $A=\left[a_{i j}\right]$ be an n-square matrix.
Define $M_{i j}$ as the $(n-1)$-square matrix obtained from A by deleting the i-th row and the j-th column of A.

The minor of the element $a_{i j}$ of A is defined as:

$$
\operatorname{minor}(A)=\operatorname{det}\left(M_{i j}\right)
$$

The cofactor of $a_{i j}$ is defined as the signed minor of $a_{i j}$, and denoted by:

$$
C_{i j}=(-1)^{i+j}\left|M_{i j}\right|
$$

Adjoint

We can form a matrix of cofactors

$$
C=\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 n} \\
C_{21} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \cdots & C_{n n}
\end{array}\right]
$$

where $C_{i j}$ is the cofactor of $a_{i j}$.
The adjoint of matrix A is defined as:

$$
\operatorname{adj}(A)=C^{T}
$$

Example of adjoint

Given matrix:

$$
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right]
$$

The cofactors of A are:

- $C_{11}=12$
- $C_{12}=6$
- $C_{13}=-16$
- $C_{21}=4$
- $C_{22}=2$
- $C_{23}=16$
- $C_{31}=12$
- $C_{13}=-10$
- $C_{33}=16$

The matrix of cofactors and the adjoint of A are:

$$
C=\left[\begin{array}{ccc}
12 & 6 & -16 \\
4 & 2 & 16 \\
12 & -10 & 16
\end{array}\right] \quad \operatorname{adj}(A)=\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right]
$$

Matrix inverse from adjoint

Theorem
Let A be an invertible matrix. Then:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Proof can be read on the Howard Anton book, page 134.

Algorithm for inverse computation using adjoint

Suppose that $A=\left[a_{i j}\right]$ is a matrix of size $n \times n$. We want to compute A^{-1}

1. For each element $a_{i j}$, find matrix $M_{i j}$.
2. Compute the minor of $M_{i j}$, namely minor $\left(a_{i j}\right)=\left|M_{i j}\right|$.
3. Compute the cofactor of $a_{i j}$, namely $C_{i j}=(-1)^{i+j} \cdot\left|M_{i j}\right|$.
4. Build the cofactor matrix $C=\left[C_{i j}\right]$.
5. Find the adjoint of A, namely $\operatorname{Adj}(A)=C^{T}$.
6. Compute the inverse of A, namely:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{Adj}(A)
$$

Example

From the previous example, we have:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
1 & 6 & 3 \\
2 & -4 & 0
\end{array}\right] \quad \operatorname{adj}(A)=\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right] \\
& \operatorname{det}(A)=0+12+4-(-12-36+0)=16-(-48)=64
\end{aligned}
$$

Hence,

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{64}\left[\begin{array}{ccc}
12 & 4 & 12 \\
6 & 2 & -10 \\
-16 & 16 & 16
\end{array}\right]=\left[\begin{array}{ccc}
\frac{12}{64} & \frac{4}{64} & \frac{12}{64} \\
\frac{6}{64} & \frac{2}{64} & \frac{-10}{64} \\
\frac{-16}{64} & \frac{16}{64} & \frac{16}{64}
\end{array}\right]
$$

Part 3: Properties of matrix inverse

Basic properties of matrix inverse

Let A be an invertible matrix. The followings hold.

1. $\left(A^{-1}\right)^{-1}=A$
2. $(k A)^{-1}=k^{-1} A^{-1}$ for a scalar $k \neq 0 \in \mathbb{R}$
3. $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
4. $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$

Exercises:

Prove the properties of matrix inverse.
Give an example for each property to check the correctness of the theorem.

Basic properties of matrix inverse

Theorem
If A and B are invertible, then $A B$ is invertible.

Proof.
Consider $B^{-1} A^{-1}$. Then:

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

Hence, $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.

Generalization:
If $A_{1}, A_{2}, \ldots, A_{k}$ are invertible matrices, then:

$$
\left(A_{1} A_{2} \ldots A_{k}\right)^{-1}=A_{k}^{-1} \ldots A_{2}^{-1} A_{1}^{-1}
$$

Exercise

will be given during the lecture
Numbers 4, 5, 6, page 76 Howard Anton Reference Book

Part 4: Orthogonal matrices

Orthogonal matrices

A matrix is called orthogonal if $A^{T}=A^{-1}$, i.e., $A A^{T}=A^{T} A=I$ (the identity matrix).

Note: A is orthogonal only if A is square and invertible matrix.
Example
Let $A=\left[\begin{array}{ccc}\frac{1}{9} & \frac{8}{9} & -\frac{4}{9} \\ \frac{4}{9} & -\frac{4}{9} & -\frac{7}{9} \\ \frac{8}{9} & \frac{1}{9} & \frac{4}{9}\end{array}\right]$
Is A orthogonal? What is the result of $A A^{T}$?

Orthonormality

Vectors $u_{1}, u_{2}, \ldots, u_{m}$ in \mathbb{R}^{n} are said to form an orthonormal set of vectors if the vectors are unit vectors and are orthogonal to each other; i.e.,

$$
u_{i} \cdot u_{j}= \begin{cases}0 & \text { if } i \neq j \\ 1 & \text { if } i=j\end{cases}
$$

Theorem
Let A be a real matrix. Then the following are equivalent:

- A is orthogonal.
- The rows of A form an orthonormal set.
- The columns of A form an orthonormal set.

to be continued...

