Linear Algebra
 [KOMS120301] - 2023/2024

5.1 - Determinants of Matrices

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 5 (September 2023)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of determinant of a matrix;
2. compute the determinant of (2×2) matrices;
3. compute the determinant of (3×3) matrices;
4. explain the geometric interpretation of determinant of (2×2) matrices;
5. explain the geometric interpretation of determinant of (3×3) matrices;
6. explain the use of determinant in the system of liner equations;
7. use permutation to compute determinants;

Good math skills are developed by

 doing lots of problems.

Part 1: Formal definition of determinant

Formal definition of determinant matrix

Given a square matrix $A=\left[a_{i j}\right]$ of size $n \times n$.
We can assign a scalar to matrix A, as a function of the entries of the square matrix. This is called the determinant of matrix A.

The determinant of matrix A is denoted by $|A|$, and often written as:

$$
\left|\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

Determinants of orders 1 and 2

For $n=1,2$, the determinants are defined as:

$$
\left|a_{11}=a_{11}\right| \quad \text { and } \quad\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

Example

Find the determinant of the following matrices:

$$
\left[\begin{array}{ll}
5 & 3 \\
2 & 6
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
4 & -5 \\
-6 & 3
\end{array}\right]
$$

Part 2: Determinants of 2×2 matrices

Determinants of 2×2 matrices

Given a matrix:

$$
A=\left[\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right]
$$

In high school, you might have learned that the determinant of the matrix (size 2×2) is defined as

$$
a_{1} b_{2}-a_{2} b_{1}
$$

and is denoted by:

$$
|A|=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

Motivating example:
 an important application of determinant

Recall that, given a system of linear equations in two variables:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

- The system has exactly one solution when $a_{1} b_{2}-a_{2} b_{1} \neq 0$
- The system has no solution or infinitely many solutions when $a_{1} b_{2}-a_{2} b_{1}=0$

Motivating example:

an important application of determinant

Recall that, given a system of linear equations in two variables:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

- The system has exactly one solution when $a_{1} b_{2}-a_{2} b_{1} \neq 0$
- The system has no solution or infinitely many solutions when $a_{1} b_{2}-a_{2} b_{1}=0$

The coefficient matrix $\left[\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$ has determinant $=a_{1} b_{2}-a_{2} b_{1}$.
Remark. Determinant of the coefficient matrix determines the number of solutions of the given system. The system has a unique solution iff $D \neq 0$.

Application to linear equations

Solving the system by variable elimination:

$$
\begin{aligned}
& a_{1} b_{2} x+b_{1} b_{2} y=b_{2} c_{1} \\
& a_{2} b_{1} x+b_{1} b_{2} y=b_{1} c_{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(a_{1} b_{2}-a_{2} b_{1}\right) x & =b_{2} c_{1}-b_{1} c_{2} \\
x & =\frac{b_{2} c_{1}-b_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

We have:

$$
b_{2} c_{1}-b_{1} c_{2}=\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|=N_{x} \quad \text { and } \quad a_{1} b_{2}-a_{2} b_{1}=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=D
$$

Hence, $x=\frac{N_{x}}{D}$

Application to linear equations

Similarly, we can find the value of y :

$$
\begin{aligned}
& a_{1} a_{2} x+a_{2} b_{1} y=a_{2} c_{1} \\
& a_{1} a_{2} x+a_{1} b_{2} y=a_{1} c_{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(a_{2} b_{1}-a_{1} b_{2}\right) y & =a_{2} c_{1}-a_{1} c_{2} \\
x & =\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{2} b_{1}-a_{1} b_{2}}=\frac{a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

We have:

$$
a_{1} c_{2}-a_{2} c_{1}=\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|=N_{y} \quad \text { and } a_{1} b_{2}-a_{2} b_{1}=\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|=D
$$

Hence, $y=\frac{N_{y}}{D}$

Example

Solve the following system using determinants:

$$
\left\{\begin{aligned}
3 x-4 y & =-10 \\
-x+2 y & =2
\end{aligned}\right.
$$

Example

Solve the following system using determinants:

$$
\left\{\begin{aligned}
3 x-4 y & =-10 \\
-x+2 y & =2
\end{aligned}\right.
$$

Solution:

$$
\begin{aligned}
& N_{x}=\left|\begin{array}{cc}
-10 & -4 \\
2 & 2
\end{array}\right|=-20-(-8)=-12 \\
& N_{y}=\left|\begin{array}{cc}
3 & -10 \\
-1 & 2
\end{array}\right|=6-10=-4 \\
& D=\left|\begin{array}{cc}
3 & -4 \\
-1 & 2
\end{array}\right|=6-4=2
\end{aligned}
$$

Hence, $x=\frac{-12}{2}=-6$ and $y=\frac{-4}{2}=-2$.

Conclusion

Given:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{2} x+b_{2} y=c_{2}
\end{aligned}
$$

with the coefficient matrix $\left[\begin{array}{ll}l_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right]$ having non-zero determinant (meaning that, the system has a unique solution).
The solution is given by:

$$
x=\frac{N_{x}}{D} \quad \text { and } \quad y=\frac{N_{y}}{D}
$$

where $N_{x}=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|, \quad N_{y}=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|, \quad$ and $D=\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|$.

Geometric interpretation

Matrix $\left[\begin{array}{lr}a & b \\ c & d\end{array}\right]$ can be viewed as an
"arrangement" of:

- row vectors:

$$
\left[\begin{array}{ll}
a & b
\end{array}\right] \text { and }\left[\begin{array}{ll}
c & d
\end{array}\right]
$$

- or, column vectors:

$$
\left[\begin{array}{l}
a \\
c
\end{array}\right] \text { and }\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

The matrix defines the so-called linear transformation of the unit square (in green) formed by the basis vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, with respect to:

- the row vectors, shown by the red parallelogram; or
- the column vectors, shown by the blue parallelogram

Both parallelograms have the same area. Prove it!

Example

Given a matrix $A=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$.
Draw two parallelograms that define the transformation of the unit square w.r.t. the row vectors and the column vectors, respectively.

Example

Given a matrix $A=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$.
Draw two parallelograms that define the transformation of the unit square w.r.t. the row vectors and the column vectors, respectively.

Solution:

Part 3: Determinants of 3×3 matrices

Determinants of matrices of order 3 (i.e., size 3×3)

Given a matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The determinant of the matrix above is defined as:

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

Alternative form for the determinant of an order-3 matrix

The determinant of the matrix above is defined as:

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32} \\
& =a_{11}\left(a_{22} a_{23}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

This formula can be illustrated as follows:

$$
a_{11}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Example

Find the determinant of matrix $A=\left[\begin{array}{ccc}3 & 2 & 1 \\ -4 & 5 & -1 \\ 2 & -3 & 4\end{array}\right]$

Solution:

- Using the diagram

$$
\begin{aligned}
\operatorname{det}(A) & =3(5)(4)+2(-1)(2)+(1)(-4)(-3)-1(5)(2)-2(-4) 4-3(-1)(-3) \\
& =60-4+12-10+32-9=81
\end{aligned}
$$

- Using the alternative form

$$
\begin{aligned}
\left|\begin{array}{ccc}
3 & 2 & 1 \\
-4 & 5 & -1 \\
2 & -3 & 4
\end{array}\right| & \left.=1 \begin{array}{ccc}
3 & 2 & 1 \\
-4 & 5 & -1 \\
2 & -3 & 4
\end{array}|-2| \begin{array}{ccc}
3 & 2 & 1 \\
-4 & 5 & -1 \\
2 & -3 & 4
\end{array}|+3| \begin{array}{ccc}
3 & 2 & 1 \\
-4 & 5 & -1 \\
2 & -3 & 4
\end{array} \right\rvert\, \\
& =1\left|\begin{array}{cc}
5 & -1 \\
-3 & 4
\end{array}\right|-2\left|\begin{array}{cc}
-4 & -1 \\
2 & 4
\end{array}\right|+3\left|\begin{array}{cc}
-4 & 5 \\
2 & -3
\end{array}\right| \\
& =1(20-3)-2(-16+2)+3(12-10)=17+28-6=39
\end{aligned}
$$

Applications to linear equations system

Given the following linear system:

$$
\left\{\begin{array}{l}
a_{11} x+a_{12} y+a_{13} z=b_{1} \\
a_{21} x+a_{22} y+a_{23} z=b_{2} \\
a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{array}\right.
$$

We can perform similar computations as in the case (2×2) matrix, in order to find a solution of the system.
The coefficient matrix of the system is given by: $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
The system has a unique solution only if $D=\operatorname{det}(A) \neq 0$.
The solution is given by:

$$
x=\frac{N_{x}}{D}, \quad y=\frac{N_{y}}{D}, \quad z=\frac{N_{z}}{D}
$$

where N_{x}, N_{y}, and N_{z} is obtained by replacing the 1st, 2nd, and 3rd column of A by the constant vector $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

Geometric interpretation

In \mathbb{R}^{3}, the vectors u_{1}, u_{2}, and u_{3} determine the parallelepiped, which is the result of transforming the unit cube using the vectors $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Remark.

Let $u_{1}, u_{2}, \ldots, u_{n}$ be vectors in \mathbb{R}^{n}. Then the parallelepiped is defined by:

$$
S=\left\{a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}: 0 \leq a_{i} \leq 1 \text { for } i=1, \ldots, n\right\}
$$

with volume $V(S)=$ absolute value of $\operatorname{det}(A)$
Can you prove it?

Part 4: Determinants of arbitrary order (a combinatorial way)

Pattern in the determinant formulas

Can you find a pattern of the following determinant formulas?

- For 2×2 matrix: $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ then

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

- For 3×3 matrix: $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

We will study these patterns!

Sign (parity) of a permutation

Given a sequence of elements: $\sigma=j_{1} j_{2} \ldots j_{n}$, a permutation of σ is defined as an arrangement of the objects in σ in a definite order.

The set of all permutations of n objects is denoted by S_{n}.
An inversion in σ is a pair of integers (i, k), such that $i>k$ but i precedes k in σ.
σ is called:

- even permutation, if there are an even number of inversions in σ;
- odd permutation, otherwise.

The sign or parity of the permutation σ is defined by:

$$
\operatorname{sgn}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is even } \\ -1 & \text { if } \sigma \text { is odd }\end{cases}
$$

Example: sign of a permutation

Given a permutation $\sigma=35412$ in S_{5}. What is the sign of σ ?

Example: sign of a permutation

Given a permutation $\sigma=35412$ in S_{5}. What is the sign of σ ?

Solution:

- 3 numbers (3, 4 and 5) precede 1 ;
- 3 numbers (3, 4 and 5) precede 2 ;
- 1 number (5) precedes 4;
- no number that precedes 3 or 4

Since $3+3+1=7$ is odd, then σ is an odd permutation. Hence

$$
\operatorname{sgn}(\sigma)=-1
$$

Example: sign of a permutation

Given a permutation $\sigma=35412$ in S_{5}. What is the sign of σ ?

Solution:

- 3 numbers (3,4 and 5) precede 1 ;
- 3 numbers (3,4 and 5) precede 2 ;
- 1 number (5) precedes 4 ;
- no number that precedes 3 or 4

Since $3+3+1=7$ is odd, then σ is an odd permutation. Hence

$$
\operatorname{sgn}(\sigma)=-1
$$

Exercises:

1. Find the sign of the permutation: $\epsilon=123 \ldots n$ in S_{n}.
2. Find the sign of each permutation in S_{2} and S_{3}.
3. Is it true that in S_{n}, half of the permutations are even, and half of them are odd?

Using permutation in computing determinants (1)

Given an $n \times n$ matrix $A=\left[a_{i j}\right]$ over a field K.
Consider a product of n elements of A (here, $j_{1} j_{2} \ldots j_{n}$ is a permutation of $123 \ldots n$):

$$
a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}
$$

such that:

- one and only one element comes from each row of A; and
- one and only one element comes from each column of A.

Q: How many different products of form $a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}$ are there?

Using permutation in computing determinants (1)

Given an $n \times n$ matrix $A=\left[a_{i j}\right]$ over a field K.
Consider a product of n elements of A (here, $j_{1} j_{2} \ldots j_{n}$ is a permutation of $123 \ldots n$):

$$
a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}
$$

such that:

- one and only one element comes from each row of A; and
- one and only one element comes from each column of A.

Q: How many different products of form $a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}$ are there?
A: There are n ! such products, because there are n ! permutations of $j_{1} j_{2} \ldots j_{n}$.

Using permutation in computing determinants (2)

The determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is defined as: the sum of all the n ! products $a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}$, where each product is multiplied by the sign of $\sigma=j_{1} j_{2} \ldots j_{n}$.

$$
|A|=\sum_{\sigma} \operatorname{sgn}(\sigma) a_{1 j_{1}} a_{2 j_{2}} \ldots a_{n j_{n}}
$$

or, this can be written as:

$$
|A|=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} a_{2 j \sigma(2)} \ldots a_{n \sigma(n)}
$$

Using permutation in computing determinants (3)

1. Given $A=\left[a_{11}\right]$, then $\operatorname{det}(A)=a_{11}$.
2. Given $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then $\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}$.
3. Given $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then:

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}
\end{aligned}
$$

to be continued...

(C) Dewi Sintiari/CS Undiksha

