Linear Algebra [KOMS120301] - 2023/2024

4.2 - Gauss-Jordan Elimination

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 4 (September 2023)

1 / 19 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Learning objectives

After this lecture, you should be able to:

• apply the Gauss-Jordan elimination algorithm to solve a system of linear equations.

2 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ● ●

Introduction

Carl Friedrich Gauss (German mathematician)

Wilhelm Jordan (German mathematician)

ヘロト ヘ団ト ヘヨト ヘヨト

3 / 19 © Dewi Sintiari/CS Undiksha

Introduction

This is a development of the Gaussian-Elimination method.

• The ERO is implemented on the augmented matrix, so that a *reduced echelon matrix* is obtained.

a ₁₁	<i>a</i> ₁₂	• • •	a _{1n}	b_1		[1	*	*	• • •	*	*
a ₂₁	a ₂₂	• • •	a _{2n}	<i>b</i> ₂	EDO	0	1	*	•••	*	*
÷	÷	÷	÷	÷	\sim ERU \sim	:	÷	÷	÷	÷	
a _{m1}	a _{m2}	• • •	a _{mn}	b_m		0	0	0	• • •	1	*

- The difference with the Gaussian method is that, here backward substitution is not needed to obtain the variables values.
- The value of each variable can be derived directly from the augmented matrix.

4 / 19 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Steps in Gauss-Jordan method

1. Forward phase (Gauss elimination phase)

Under the main diagonal of 1's should be 0.

$$\begin{bmatrix} 2 & 3 & -1 & 5 \\ 4 & 4 & -3 & 3 \\ -2 & 3 & -1 & 1 \end{bmatrix} \xrightarrow{ERO} \begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

2. Backward phase

Above the main diagonal of 1's should be 0.

$$\begin{bmatrix} 1 & 3/2 & -1/2 & 5/2 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \overset{R_1 - (3/2)R_2}{\sim} \begin{bmatrix} 1 & 0 & -5/4 & -11/4 \\ 0 & 1 & 1/2 & 7/2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$
$$\overset{R_1 + (5/4)R_3}{\underset{R_2 - (1/2)R_3}{\sim}} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

The last matrix is a reduced row echelon form.

We can derive the solution directly: $x_1 = 1$, $x_2 = 2$, $x_3 = 3$.

5 / 19 © Dewi Sintiari/CS Undiksha

$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 = -1 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = -2 \\ -x_1 + 2x_2 - 4x_3 + x_4 = 1 \\ 3x_1 - 3x_4 = -3 \end{cases}$$

Solution:

© Dewi Sintiari/CS Undiksha

Example 1 (cont.)

The last augmented matrix is in reduced row echelon form:

The solution can be obtained by solving the system:

$$x_1 - x_4 = -1$$
$$x_2 - 2x_3 = 0$$

From the 2nd eq, we obtain: $x_2 = 2x_3$ From the 1st eq, we obtain: $x_1 = x_4 - 1$

Let $x_3 = r$ and $x_4 = s$ with $r, s \in \mathbb{R}$. Then the solution of the system is:

$$x_1 = s - 1$$
, $x_2 = 2r$, $x_3 = r$, $x_4 = s$

7 / 19 © Dewi Sintiari/CS Undiksha

Solve the following system using Gauss-Jordan method

$$\begin{cases} -2x_3 + 7x_5 = 12\\ 2x_1 + 4x_2 - 10x_3 + 6x_4 + 12x_5 = 28\\ 2x_1 + 4x_2 - 5x_3 + 8x_4 - 5x_5 = -1 \end{cases}$$

Solution:

$$\begin{bmatrix} 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -10 & 6 & 12 & 28 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \overset{R_1 \leftrightarrow R_2}{\sim} \begin{bmatrix} 2 & 4 & -10 & 6 & 12 & 28 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \overset{R_1/2}{\sim} \overset{R_1/2}{\sim} \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 2 & 4 & -5 & 6 & -5 & -1 \end{bmatrix} \overset{R_3 - 2R_1}{\sim} \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & -2 & 0 & 7 & 12 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \overset{R_2/(-2)}{\sim}$$

8 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Example 2 (cont.)

$$\begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -7/2 & -6 \\ 0 & 0 & 5 & 0 & -17 & -29 \end{bmatrix} \xrightarrow{R_3 - 5R_2} \begin{bmatrix} 1 & 2 & -5 & 3 & 6 & 14 \\ 0 & 0 & 1 & 0 & -7/2 & -6 \\ 0 & 0 & 0 & 0 & 1/2 & 1 \end{bmatrix} \xrightarrow{R_3/(1/2)} \overset{R_3/(1/2)}{\sim} \begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1/2 & 1 \end{bmatrix} \xrightarrow{R_1 - 6R_3} \overset{R_1 - 6R_3}{\sim} \begin{bmatrix} 1 & 2 & -5 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{R_1 + 5R_2} \overset{R_1 + 5R_2}{\sim}$$

From the last augmented matrix, can be derived:

7 $(x_1 + 2x_2 + $	$+3x_4 = 7$
1 / x ₂	= 1
2	
- ($x_5 \equiv 2$

Let $x_2 = s$ and $x_4 = t$, the solution of the system:

 $x_1 = 7 - 2s - 3t, \ x_2 = s, \ x_3 = 1, \ x_4 = t, \ x_5 = 2, \ s, t \in \mathbb{R}$

(日)

9 / 19 © Dewi Sintiari/CS Undiksha

Solve the following system using Gauss-Jordan method

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_5 = 0\\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0\\ x_1 + x_2 - 2x_3 - x_5 = 0\\ x_3 + x_4 + x_5 = 0 \end{cases}$$

The augmented matrix:

$$\begin{bmatrix} 2 & 2 & -1 & 0 & 1 & 0 \\ -1 & -1 & 2 & -3 & 1 & 0 \\ 1 & 1 & -2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

which can be reduced into row-echelon form:

Γ1	1	0	0	1	0
0	0	1	0	1	0
0	0	0	1	0	0
0	0	0	0	0	0

10 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Example 3 (cont.)

The corresponding linear equations system is:

$$\begin{cases} x_1 + x_2 &+ x_5 = 0 \\ x_3 &+ x_5 = 0 \\ x_4 &= 0 \end{cases}$$

Solving the *leading variables*, we get:

$$x_1 = -x_2 - x_5$$
$$x_3 = -x_5$$
$$x_4 = 0$$

The general solution is:

$$x_1 = -s - t, \ x_2 = s, \ x_3 = -t, \ x_4 = 0, \ x_5 = t, \ \ {
m with} \ s, t \in \mathbb{R}$$

11 / 19 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Analysis of Example 3

What can you observe from the above linear system?

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_5 = 0\\ -x_1 - x_2 + 2x_3 - 3x_4 + x_5 = 0\\ x_1 + x_2 - 2x_3 - x_5 = 0\\ x_3 + x_4 + x_5 = 0 \end{cases}$$

12 / 19 © Dewi Sintiari/CS Undiksha

Homogeneous Linear System

13 / 19 © Dewi Sintiari/CS Undiksha

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Homogeneous Linear System

Recall that the following system is called homogeneous linear system.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

The solution always has a solution, namely:

$$x_1 = 0, x_2 = 0, \ldots, x_n = 0$$

this solution is called trivial solution.

If a solution other than $x_1 = 0, x_2 = 0, \ldots, x_n = 0$ exists, then it is called non-trivial solution.

14 / 19 © Dewi Sintiari/CS Undiksha

(日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)
 (日)

Homogeneous Linear System

Example

From Example 3 of the previous section, we obtain the solution of the given linear system is:

$$x_1 = -s - t, \ x_2 = s, \ x_3 = -t, \ x_4 = 0, \ x_5 = t, \ \text{ with } s, t \in \mathbb{R}$$

Here, if s, t = 0, then we get the **trivial solution**, namely:

$$x_1 = 0, \ x_2 = 0, \ x_3 = 0, \ x_4 = 0, \ x_5 = 0$$

We can set $s \neq 0$ or $t \neq 0$ to get **non-trivial solutions**.

(日)

Solve the following homogeneous linear system by Gauss-Jordan elimination:

0	2	2	4	0
1	0	-1	-3	0
2	3	1	1	0
-2	1	3	-2	0

Solution:

$$\begin{bmatrix} 0 & 2 & 2 & 4 & 0 \\ 1 & 0 & -1 & -3 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} \overset{R1 \leftrightarrow R2}{\sim} \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 2 & 2 & 4 & 0 \\ 2 & 3 & 1 & 1 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} \overset{R3 \rightarrow R2}{\sim} \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 2 & 2 & 4 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} \overset{R3 \rightarrow R2}{\sim} \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ -2 & 1 & 3 & -2 & 0 \end{bmatrix} \overset{R1 + 3R3}{\sim} \begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 1 & 1 & -8 & 0 \end{bmatrix}$$

16/19 © D

© Dewi Sintiari/CS Undiksha

Analysis

Why the following matrix has a reduced-row echelon form?

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

17 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Analysis of homogeneous system

When does a homogeneous linear system has an infinitely many solutions?

18 / 19 © Dewi Sintiari/CS Undiksha

Analysis of homogeneous system

When does a homogeneous linear system has an infinitely many solutions?

How many <u>free variables</u> do exist in a homogeneous linear system (relate it to the value of n and r)?

18 / 19 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Analysis of homogeneous system

Theorem

If a homogeneous linear system has n unknowns, and if the reduced row echelon form of its augmented matrix has r nonzero rows, then the system has n - r free variables.

Theorem

A homogeneous linear system with more unknowns than equations has infinitely many solutions.

イロト 不得 トイヨト イヨト 二日