Linear Algebra
 [KOMS120301] - 2023/2024

3.1 - Linear System of Equations

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 3 (September 2023)

Motivating example

Rp 21.000,00

Rp 22.000,00

???

Motivating example

Rp 26.000,00

Rp 24.500,00

Rp 16.000,00

???

Part 1: System of linear equations

(We sometime call it "linear system")

Learning objectives

After this lecture, you should be able to:

1. analyze the components of a system of linear equations;
2. verify whether a given set is a solution of a linear system;
3. identify a homogeneous and non-homogeneous linear system;
4. formulate the coefficient matrix and augmented matrix of a given linear system;
5. showing that elementary row system gives an equivalent linear system;
6. analyze the geometric interpretation of a linear system with 1 , 2 , or 3 variables;
7. apply the elimination and substitution algorithms to solve a linear system;
8. explain the concept of linear system written in triangular matrix or in echelon form.

Terminology and notation (1)

Given unknowns variables $x_{1}, x_{2}, \ldots, x_{n}$, a linear equation on the variables is defined as:

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b \tag{1}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}, b \in \mathbb{R}$ (this can be replaced by another field).
A solution of equation (1) is a list of values for the unknowns, or a vector u in \mathbb{R}^{n}.

$$
x_{1}=r_{1}, x_{2}=r_{2}, \ldots, x_{n}=r_{n} \quad \text { or } \quad u=\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

This means that the following is correct:

$$
a_{1} r_{1}+a_{2} r_{2}+\cdots+a_{n} r_{n}=b
$$

In this case, we say that u satisfies equation (1).

Terminology and notation (2)

In equation (1):

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

We say that:

- the equation is written in the standard form
- the constant a_{k} is the coefficient of x_{k}
- b is the constant term of the equation

Note: If n is small, we use different letters to denote the variables, instead of using indexing.

Example: how many solutions are there?

Given an equation:

$$
2 x+3 y-z=4
$$

Can you find a solution for the equation?
How many solutions that you can find?

System of linear equations

A system of linear equations is a list of linear equations: $L_{1}, L_{2}, \ldots, L_{m}$ with the same variables $x_{1}, x_{2}, \ldots, x_{n}$.

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{2}\\
\cdots \tag{3}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \tag{4}
\end{gather*}
$$

where $a_{i j}$ and b_{i} are constants.

- The system of linear equations is written in standard form
- The system is called an $m \times n$ system
- $a_{i j}$ is the coefficient of variable x_{j} in the equation L_{i}
- the number b_{i} is the constant of the equation L_{i}

What does the word "linear" mean???

Solution of "system of linear equations"

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

A solution of the system is a list of values for the unknowns or a vector u in \mathbb{R}^{n}.

Example: verifying solution of a linear system

Given the following system of linear equations:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+4 x_{3}+3 x_{4}=5 \\
2 x_{1}+3 x_{2}+x_{3}-2 x_{4}=1 \\
x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=3
\end{array}\right.
$$

- What is the value of m and n in the system?
- Determine whether the following are solutions of the system!

1. $u=(-8,6,1,1)$
2. $v=(-10,5,1,2)$

Part 2: Types of system of linear equations

Augmented and coefficient matrices of a system

The system of linear equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots \cdots \cdots \cdots+\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

can be written in matrix form:

$$
\left[\begin{array}{cccc}
a_{11} x_{1} & a_{12} x_{2} & \cdots & a_{1 n} x_{n} \\
a_{21} x_{1} & a_{22} x_{2} & \cdots & a_{2 n} x_{n} \\
\cdots & & & \\
a_{m 1} x_{1} & a_{m 2} x_{2} & \cdots & a_{m n} x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right] \quad\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{m}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right]
$$

Augmented and coefficient matrices of a system

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] \text { and }\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\cdots & & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]
$$

- the left matrix is called the coefficient matrix of the system;
- the right matrix is called the augmented matrix of the system.

Furthermore, the vector

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

is called the constant vector (or constant matrix) of the system.

Example: augmented matrix and coefficient matrix

Given the following system of equations:

$$
\left\{\begin{aligned}
x_{1}+x_{2}+4 x_{3}+3 x_{4} & =5 \\
2 x_{1}+3 x_{2}+x_{3}-2 x_{4} & =1 \\
x_{1}+2 x_{2}-5 x_{3}+4 x_{4} & =3
\end{aligned}\right.
$$

Example: augmented matrix and coefficient matrix

Given the following system of equations:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+4 x_{3}+3 x_{4}=5 \\
2 x_{1}+3 x_{2}+x_{3}-2 x_{4}=1 \\
x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=3
\end{array}\right.
$$

The coefficient matrix and the augmented matrix are as follows:

$$
\left[\begin{array}{cccc}
1 & 1 & 4 & 3 \\
2 & 3 & 1 & -2 \\
1 & 2 & -5 & 4
\end{array}\right] \quad \text { and }\left[\begin{array}{ccccc}
1 & 1 & 4 & 3 & 5 \\
2 & 3 & 1 & -2 & 1 \\
1 & 2 & -5 & 4 & 3
\end{array}\right]
$$

Homogeneous \& non-homogeneous linear system

For the given system:

$$
\left[\begin{array}{lllll}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\cdots & & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right] \quad \text { and }\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & & & \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

It is called homogeneous if $b_{i}=0, \forall i$. Otherwise, it is called non-homogeneous.

Every homogeneous linear system always has a solution. Can you guess what it is?

Degenerate and non-degenerate linear equations

A linear equation is degenerate if all coefficients are zero

$$
0 x_{1}+0 x_{2}+\cdots+0 x_{n}=b
$$

Can you guess, what is the condition s.t. the linear equation has a solution?

Degenerate and non-degenerate linear equations

A linear equation is degenerate if all coefficients are zero

$$
0 x_{1}+0 x_{2}+\cdots+0 x_{n}=b
$$

Can you guess, what is the condition s.t. the linear equation has a solution?

- If $b \neq 0$, then the equation has no solution.
- If $b=0$, then every vector $u=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ in \mathbb{R}^{n} is a solution.

Degenerate linear equations

Theorem
Let \mathcal{L} be a system of linear equations that contains a degenerate equation L, with constant b.

1. If $b \neq 0$, then the system \mathcal{L} has no solution.
2. If $b=0$, then L may be deleted from \mathcal{L} without changing the solution set of \mathcal{L}.

Leading unknown in a nondegenerate linear equation

Given a non-degenerate linear equation L.

- What can you say about the coefficients of L?

Leading unknown in a nondegenerate linear equation

Given a non-degenerate linear equation L.

- What can you say about the coefficients of L ?
\underline{L} has at least one non-zero coefficient
Example
The following are non-degenerate linear equations.

$$
0 x_{1}+0 x_{2}+5 x_{3}+6 x_{4}+0 x_{5}+8 x_{6}=7 \text { and } 0 x+2 y-4 z=5
$$

The zero coefficients are usually omitted.

$$
5 x_{3}+6 x_{4}+8 x_{6}=7 \text { and } 2 y-4 z=5
$$

Part 3: Elementary row operations

Linear combination

Given:

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{2}\\
\cdots \tag{3}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m} \tag{4}
\end{gather*}
$$

Multiply the m equations by constants $c_{1}, c_{2}, \ldots, c_{m}$:
$\left(c_{1} a_{11}+\cdots+c_{m} a_{m 1}\right) x_{1}+\cdots+\left(c_{1} a_{1 n}+\cdots+c_{m} a_{m n}\right) x_{n}=c_{1} b_{1}+\cdots+c_{m} b_{m}$
This is a linear combination of the equations in the system.

Example

Given a linear system:

$$
\left\{\begin{array}{r}
x_{1}+x_{2}+4 x_{3}+3 x_{4}=5 \\
2 x_{1}+3 x_{2}+x_{3}-2 x_{4}=1 \\
x_{1}+2 x_{2}-5 x_{3}+4 x_{4}=3
\end{array}\right.
$$

Then:

$$
\begin{array}{rcc}
3 L 1: & 3 x_{1}+3 x_{2}+12 x_{3}+9 x_{4} & =15 \\
-2 L_{2}: & -4 x_{1}-6 x_{2}-2 x_{3}+4 x_{4} & =-2 \\
4 L_{1}: & 4 x_{1}+8 x_{2}-20 x_{3}+16 x_{4} & =12 \\
\hline & & \\
\text { (Sum) } L: & 3 x_{1}+5 x_{2}-10 x_{3}+29 x_{4} & =25
\end{array}
$$

- L is a linear combination of L_{1}, L_{2}, and L_{3}
- Is $u=(-8,6,1,1)$ a solution of the system?
- Is $u=(-8,6,1,1)$ a solution of the linear combination?

Equivalent systems

Theorem
Given two systems of linear equations, say L_{1} and L_{2}. They have the same solutions iff each equation in L_{1} is a linear combination of the equations in L_{2}.

Definition
Two systems of linear equations are equivalent if they have the same solutions.

Elementary operations

Given a system of linear equations $L_{1}, L_{2}, \ldots, L_{m}$. The following operations are called elementary operations.

- [E1] Interchange two of the equations

$$
\text { Interchange } L_{i} \text { and } L_{j} \quad \text { or } \quad L_{i} \leftrightarrow L_{j}
$$

- [E2] Replace an equation by a nonzero multiple of itself.

$$
\text { Replace } L_{i} \text { by } k L_{i} \text { or } k L_{i} \rightarrow L_{i}
$$

- [E3] Replace an equation by the sum of a multiple of another equation and itself.

$$
\text { Replace } L_{j} \text { by } k L_{i}+L_{j} \text { or } k L_{i}+L_{j} \rightarrow L_{j}
$$

Theorem

Given a system \mathcal{L}. Let \mathcal{M} be the system obtained from \mathcal{L} by a finite sequence of elementary operations.

Then \mathcal{M} and \mathcal{L} have the same solutions.

Note: Sometimes E_{2} and E_{3} can be applied in one step:
[E] Replace equation L_{j} by $k L_{i}+k^{\prime} L_{j}\left(\right.$ where $\left.k, k^{\prime} \neq 0\right)$

$$
k L_{i}+k^{\prime} L_{j} \rightarrow L_{j}
$$

How to find a solution of a linear equations system?

- Use elementary operations to transform the given system into an equivalent system whose solution can be easily obtained

This is called Gaussian Elimination (will be discussed later).

Part 4: Small square systems of linear equations

Linear equation in one variable

Example

Solve the following linear system of one variable:

- $4 x-1=x+6$
- $2 x-5-x=x+3$
- $4+x-3=2 x+1-x$

What can you conclude?

Linear equation in one variable

Example

Solve the following linear system of one variable:

- $4 x-1=x+6$
- $2 x-5-x=x+3$
- $4+x-3=2 x+1-x$

What can you conclude?
Theorem
Given the system of unique linear equation $a x=b$.

1. If $a \neq 0$, then $x=\frac{b}{a}$ is a unique solution of the system.
2. If $a=0$, but $b \neq 0$, then the system has no solution.
3. If $a=0$ and $b=0$, then every scalar k is a solution of $a x=b$.

Example

Example

Solve the following linear system of one variable:

- $4 x-1=x+6$ (Theorem 7 (1))

In standard form: $3 x=7$. Then $x=\frac{7}{3}$ is the unique solution.

- $2 x-5-x=x+3$ (Theorem 7 (2))

In standard form: $0 x=8$. The equation has no solution.

- $4+x-3=2 x+1-x$ (Theorem 7 (3))

In standard form: $0 x=0$. Then every scalar k is a solution.

System of two linear equations in two variables

Given a system of two non-degenerate linear equations in two variables:

$$
\begin{aligned}
& A_{1} x+B_{1} y=C_{1} \\
& A_{2} x+B_{2} y=C_{2}
\end{aligned}
$$

Example

Solve the following system of linear equations:

$$
\left\{\begin{array} { l }
{ L _ { 1 } : x - y = - 4 } \\
{ L _ { 2 } : 3 x + 2 y = 1 2 }
\end{array} \left\{\begin{array} { l }
{ L _ { 1 } : x + 3 y = 3 } \\
{ L _ { 2 } : 2 x + 6 y = - 8 }
\end{array} \quad \left\{\begin{array}{l}
L_{1}: x+2 y=4 \\
L_{2}: 2 x+4 y=8
\end{array}\right.\right.\right.
$$

What can you conclude?

The number of solutions of (2×2)-system

1. The system has exactly one solution.

$$
\begin{array}{ll}
L_{1}: & x-y=-4 \\
L_{2}: & 3 x+2 y=12
\end{array}
$$

2. The system has no solution.

$$
\begin{array}{ll}
L_{1}: & x+3 y=3 \\
L_{2}: & 2 x+6 y=-8
\end{array}
$$

3. The system has an infinite number of solutions.

$$
\begin{array}{ll}
L_{1}: & x+2 y=4 \\
L_{2}: & 2 x+4 y=8
\end{array}
$$

Geometric interpretation

(a) Exactly one solution

(b) No solution

(c) Infinitely many solution

1. System with exactly one solution

- Given:

$$
\begin{aligned}
& A_{1} x+B_{1} y=C_{1} \\
& A_{2} x+B_{2} y=C_{2}
\end{aligned}
$$

- Both lines have distinct slopes

$$
\frac{A_{1}}{A_{2}} \neq \frac{B_{1}}{B_{2}} \quad \text { or } \quad A_{1} B_{2}-A_{2} B_{1} \neq 0
$$

(C) Dewi Sintiari/CS Undiksha

2. System with no solution

- Given:

$$
\begin{aligned}
& A_{1} x+B_{1} y=C_{1} \\
& A_{2} x+B_{2} y=C_{2}
\end{aligned}
$$

- Both lines are parallel (have the same slope)

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}} \neq \frac{C_{1}}{C_{2}} \quad \text { here } \quad A_{1} B_{2}-A_{2} B_{1}=0
$$

3. System with infinitely many solutions

- Given:

$$
\begin{aligned}
& A_{1} x+B_{1} y=C_{1} \\
& A_{2} x+B_{2} y=C_{2}
\end{aligned}
$$

- Both lines have the same slopes and same y-intercepts

$$
\frac{A_{1}}{A_{2}}=\frac{B_{1}}{B_{2}}=\frac{C_{1}}{C_{2}} \quad \text { here } \quad A_{1} B_{2}-A_{2} B_{1}=0
$$

Recap

- The system has exactly one solution when $A_{1} B_{2}-A_{2} B_{1} \neq 0$
- The system has no solution of infinitely many solutions when $A_{1} B_{2}-A_{2} B_{1}=0$

The value $A_{1} B_{2}-A_{2} B_{1}$ is called determinant of order two

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|
$$

Q: Can you relate the solution of system of linear equations to determinant?

Recap

- The system has exactly one solution when $A_{1} B_{2}-A_{2} B_{1} \neq 0$
- The system has no solution of infinitely many solutions when $A_{1} B_{2}-A_{2} B_{1}=0$

The value $A_{1} B_{2}-A_{2} B_{1}$ is called determinant of order two

$$
\left|\begin{array}{ll}
A_{1} & B_{1} \\
A_{2} & B_{2}
\end{array}\right|
$$

Q: Can you relate the solution of system of linear equations to determinant?

Remark: A system has a unique solution iff the determinant of its coefficients is not zero.

The number of solutions of (3×3)-system

Example 1: unique solution

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
2 & 3 & 1 & 1 \\
3 & 1 & 2 & 1
\end{array}\right] \xrightarrow{\text { Gaussian elimination }}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

from which we can derive the set of solution:

$$
x_{1}=1, x_{2}=0, x_{3}=-1
$$

Example 2: infinitely many solution

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 4 \\
2 & -1 & 1 & 2 \\
1 & 2 & 3 & 6
\end{array}\right] \xrightarrow{\text { Gaussian elimination }}\left[\begin{array}{lll|l}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From the last row, we can derive the equation:

$$
0 x_{1}+0 x_{2}+0 x_{3}=0
$$

which can be satisfied by many value of x. The solution can be written in parametric form:

- Let $x_{3}=k$, with $k \in \mathbb{R}$
- Then $x_{2}=2-k$ and $x_{1}=4-x_{2}-2 x_{3}=4-(2-k)-2 k=2-k$

This means that there are an infinitely many solutions, because there are infinitely many possible values of k.

Example 3: no solution

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 4 \\
2 & -1 & 1 & 2 \\
1 & 2 & 3 & 7
\end{array}\right] \xrightarrow{\text { Gaussian elimination }}\left[\begin{array}{lll|l}
1 & 1 & 2 & 4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

From the last row, we can derive the equation:

$$
\begin{equation*}
0 x_{1}+0 x_{2}+0 x_{3}=1 \tag{1}
\end{equation*}
$$

Clearly, no possible value of $x_{1}, x_{2}, x_{3} \in \mathbb{R}$ that can satisfy equation (1).

What about a system with more than 3 variables?

Remark

- For a linear system with more than 3 variables, it's hard to interpret it geometrically.
- However we can check the possible number of solutions by looking at the shape of the reduced echelon form.

Figure: Left (unique solution), middle (many solutions), right (no solution) - source: lecture notes of Rinaldi Munir, ITB

to be continued...

