Linear Algebra
 [KOMS120301] - 2023/2024

2.1-Algebra of Matrices

Dewi Sintiari

Computer Science Study Program
Universitas Pendidikan Ganesha

Week 2 (September 2023)

Motivating example (1)

John $\left.\begin{array}{ccccc}\text { Mon } & \text { Tue } & \text { Wed } & \text { Thu } & \text { Fri } \\ 30 & 10 & 20 & 9 & 14 \\ 10 & 9 & 7 & 19 & 25 \\ 20 & 7 & 0 & 10 & 20\end{array}\right)$

A matrix of messages

Motivating example (2)
Rent $\left.\begin{array}{ccccc}\text { Jan } & \text { Feb } & \text { Mar } & \text { Apr } & \text { May } \\ \text { Car } \\ 1000 & 1000 & 1050 & 1050 & 1050 \\ 300 & 250 & 350 & 310 & 305 \\ 400 & 450 & 350 & 300 & 320\end{array}\right)$

A matrix of expenses

Motivating example (3)

	Boston	New York	London
Boston	0	187	3269
New York	187	0	3459
London	3269	3459	0

Motivating example (4)

MOTIVATION MATRIX

Enter your sub headline here

(C) Dewi Sintiari/CS Undiksha

Then...what can you say about matrix?

Learning objectives

After this lecture, you should be able to:

1. Define and write the components of a matrix (row, column, diagonal, and entry) correctly.
2. Perform the operations between matrices, such as: scalar multiplication, matrix addition, matrix mutiplication, transpose, powering of matrix, and polynomial of matrix.
3. Apply the properties of matrix operations to solve a problem.
4. Explain the concept and properties of square matrix.
5. Apply the concept of block matrices to solve matrix operation.

Part 1: Matrices and their operations

Formal definition of matrices

A matrix A over a field K (or simply a matrix A, when K is implicit), is a rectangular array of scalars:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

The rows of matrix A are the m horizontal lists:

$$
\left(a_{11}, a_{12}, \ldots, a_{1 n}\right),\left(a_{21}, a_{22}, \ldots, a_{2 n}\right), \ldots,\left(a_{m 1}, a_{m 2}, \ldots, a_{m n}\right)
$$

The columns of matrix A are the n vertical lists:

$$
\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\cdots \\
a_{m 1}
\end{array}\right],\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\ldots \\
a_{m 3}
\end{array}\right], \ldots,\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\cdots \\
a_{m n}
\end{array}\right]
$$

Note: So, a matrix is composed by a set of vectors.

Formal definition of matrices

The element $a_{i j}$ of matrix A (on row i, column j) is called $i j$-entry or ij-element.

We write the matrix as: $A=\left[a_{i j}\right]$.
A is a matrix of size $m \times n$.

- if $m=1$ (only one row), then it is called row matrix or row vector;
- if $n=1$ (only one column), then it is called column matrix or column vector.
A is called zero matrix if all entries of the matrix are zero.

Example

- Row matrix: $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]$
- Column matrix: $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
- Zero matrix: $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
- A 3×2 matrix: $\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

Matrix operations

We are going to discuss:

1. Scalar multiplication
2. Matrix addition
3. Matrix multiplication
4. Transpose matrix
5. Power of matrix
6. Polynomial of matrix

1. Scalar multiplication

The product of matrix $A=\left[a_{i j}\right]$ with a scalar $k \in \mathbb{R}$ is defined as:

$$
k A=\left[\begin{array}{cccc}
k a_{11} & k a_{12} & \cdots & k a_{1 n} \\
k a_{21} & k a_{22} & \cdots & k a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
k a_{m 1} & k a_{m 2} & \cdots & k a_{m n}
\end{array}\right]
$$

Moreover, $-A=(-1) A$.

2. Matrix addition

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ be matrices of the same size $m \times n$. The sum of A and B is defined as:

$$
A+B=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right]
$$

Moreover, $A-B=A+(-B)$.

Properties of matrices under addition and scalar multiplication

Theorem

Let A, B, and C be matrices with the same size, and $k, k^{\prime} \in \mathbb{R}$. Then:

- $(A+B)+C=A+(B+C)$
- $A+B=B+A$
- $A+0=A$
- $A+(-A)=0$
- $k(A+B)=k A+k B$
- $\left(k+k^{\prime}\right) A=k A+k^{\prime} A$
- $\left(k k^{\prime}\right) A=k\left(k^{\prime} A\right)$
- $1 \cdot A=A$
(1 is the identity elt over scalar multiplication)

Note: Hence, the sum $A_{1}+A_{2}+\cdots+A_{n}$ can be done in any order, and does not require any parenthesis.

Example

Given the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & 1 \\
5 & 5 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 4 & 6 \\
1 & 2 & 2 \\
-1 & 0 & 4
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 2 & 3 \\
9 & 8 & 7
\end{array}\right]
$$

Simplify the following matrix expression.

- $A+B$
- $B-C$
- $-3 A+2 B$
- $5 A+2 B-3 C$
- $3(A-C)+B$
- $A-A$

3. Matrix multiplication

Special case: the product of a row matrix and a column matrix having the same number of elements.

Let $A=\left[a_{i}\right]$ be a row matrix and $B=\left[b_{i}\right]$ be a column matrix. Then the product $A B$ is defined as:
$A B=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]\left[\begin{array}{c}b_{1} \\ b_{2} \\ \ldots \\ b_{n}\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}$
Example
$[7,-4,5]\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]=7(3)+(-4)(2)+5(-1)=21-8-5=8$
(or this can be written as [8])

Matrix multiplication

Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of size $m \times p$ and $p \times n$ respectively. Then the product of A and B is a matrix $A B$ of size $m \times n$ defined by:

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 p} \\
\cdot & \cdots & \cdot \\
a_{i 1} & \cdots & a_{i p} \\
\cdot & \cdots & \cdot \\
a_{m 1} & \cdots & a_{m p}
\end{array}\right] \times\left[\begin{array}{ccccc}
b_{11} & \cdots & b_{1 j} & \cdots & b_{1 n} \\
\cdot & \cdots & \cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot & \cdots & \cdot \\
\cdot & \cdots & \cdot & \cdots & \cdot \\
b_{p 1} & \cdots & b_{p j} & \cdots & b_{p n}
\end{array}\right]=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\cdot & \cdots & \cdot \\
\cdot & c_{i j} & \cdot \\
\cdot & \cdots & \cdot \\
c_{m 1} & \cdots & c_{m n}
\end{array}\right]
$$

where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i p} b_{p j}=\sum_{k=1}^{p} a_{i k} b_{k j}$

Example

Find $A B$ where $A=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 0 & -4 \\ 5 & -2 & 6\end{array}\right]$.

Example

Find $A B$ where $A=\left[\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 0 & -4 \\ 5 & -2 & 6\end{array}\right]$.
Multiply each row of A with each column of B.
Since A is of size 2×2 and B is of size 2×3, then $A B$ is of size 2×3.

$$
A B=\left[\begin{array}{ccc}
2+15 & 0-6 & -4+18 \\
4-5 & 0+2 & -8-6
\end{array}\right]=\left[\begin{array}{ccc}
17 & -6 & 14 \\
-1 & 2 & -14
\end{array}\right]
$$

Relation between matrix addition and matrix multiplication

Theorem
Let A, B, and C be matrices. Then whenever the products and sums are defined,

- $(A B) C=A(B C)$
- $A(B+C)=A B+A C$
- $(B+C) A=B A+C A$
(associative)
- $k(A B)=(k A) B=A(k B)$ where $k \in \mathbb{R}$
- $O A=0$ and $A 0=0$, where 0 is the zero matrix

Transpose matrix

The transpose of a matrix A, denoted by A^{T}, is the the matrix obtained by writing the columns of A , in order, as rows.

If $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$, then $A^{T}=\left[\begin{array}{cccc}a_{11} & a_{21} & \cdots & a_{m 1} \\ a_{12} & a_{22} & \cdots & a_{m 2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1 n} & a_{2 n} & \cdots & a_{m n}\end{array}\right]$
Note: If A has size $m \times n$, then A^{T} has size $n \times m$.
Example

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1 & -3 & 5
\end{array}\right]^{T}=\left[\begin{array}{c}
1 \\
-3 \\
5
\end{array}\right]
$$

Operations on matrix transpose

Theorem
If A and B are matrices such that the following operations are well defined, then:

1. $\left(A^{T}\right)^{T}=A$
2. $(A+B)^{T}=A^{T}+B^{T}$
3. $(A-B)^{T}=A^{T}-B^{T}$
4. $(k A)^{T}=k A^{T}$
5. $(A B)^{T}=B^{T} A^{T}$

Note: If A has order $m \times n$, then A^{T} has order $n \times m$.

Powers of Matrices, Polynomials in Matrices

Let A be an n-square matrix over \mathbb{R} (or over other fields). Powers of A are defined as:

$$
A^{2}=A A, \quad A^{3}=A^{2} A, \quad \ldots, \quad A^{n+1}=A^{n} A, \quad \ldots, \quad \text { and } \quad A^{0}=1
$$

We can also define polynomials in the matrix A. For any polynomial:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}, \quad \text { where } a_{i} \in \mathbb{R}
$$

Polynomial $f(A)$ is defined as:

$$
f(A)=a_{0} I+a_{1} A+a_{2} A^{2}+\cdots+a_{n} A^{n}
$$

Note: If $f(A)=0$ (the zero matrix), then A is called a zero or root of $f(x)$.

Example

Let $A=\left[\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right]$. Then:

$$
\begin{gathered}
A^{2}=\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]=\left[\begin{array}{cc}
7 & -6 \\
-9 & 22
\end{array}\right], \text { and } \\
A^{3}=A^{2} A=\left[\begin{array}{cc}
7 & -6 \\
-9 & 22
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]=\left[\begin{array}{cc}
-11 & 38 \\
57 & -106
\end{array}\right]
\end{gathered}
$$

Suppose $f(x)=2 x^{2}-3 x+5$, then:

$$
f(A)=2\left[\begin{array}{cc}
7 & -6 \\
-9 & 22
\end{array}\right]+3\left[\begin{array}{cc}
1 & 2 \\
3 & -4
\end{array}\right]+5\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
16 & -18 \\
-27 & 61
\end{array}\right]
$$

Exercise

1. Form a group of 3 students;
2. Do the following exercises (Howard Anton's book):

- Number 1 \& 2 (2 questions @)
- Number 3-6 (3 questions ©)
- Number 7-8

Part 2: Square matrices

Square matrices

A square matrix is a matrix with the same number of rows and columns.

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Diagonal and Trace

Let $A=\left[a_{i j}\right]$ be an n-square matrix. The diagonal or main diagonal of A consists of the elements with the same subscripts, that is:

$$
a_{11}, a_{22}, \ldots, a_{n n}
$$

The trace of A, denoted by $\operatorname{tr}(A)$ is the sum of the diagonal elements of A.

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}=\sum_{i=1}^{n} a_{i i}
$$

Theorem (Properties of trace)

- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(k A)=k \operatorname{tr}(A)$
- $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ (recall that $A B \neq B A$ is not always correct)

Identity matrix, scalar matrices

The identity or unit matrix, denoted by I_{n} (or simply I) is the square matrix $n \times n$, with 1 's on the diagonal, and 0's elsewhere.

$$
I=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

I has a similar role as the scalar 1 for \mathbb{R}.
Important property: When it is well-defined,

$$
I A=A
$$

For some scalar $k \in \mathbb{R}$, the matrix $k l$ is called scalar matrix corresponding to scalar k.

Special types of square matrices

A matrix $D=\left[d_{i j}\right]$ is a diagonal matrix if its nondiagonal entries are all zero.

$$
D=\operatorname{diag}\left(d_{11}, d_{22}, \ldots, d_{n n}\right)
$$

where some or all the $d_{i i}$ may be zero.

Example

$$
\left[\begin{array}{cccc}
3 & 0 & \cdots & 0 \\
0 & -5 & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots \\
0 & 0 & \cdots & 9
\end{array}\right]
$$

Hence, identity matrices and scalar matrices are also diagonal matrices.

Upper and lower triangular matrices

A square matrix $A=\left[a_{i j}\right]$ is upper triangular, if all entries below the (main) diagonal are equal to 0 .

A lower triangular matrix is a square matrix whose entries above the diagonal are all zero.

Upper triangular matrix (left) and lower triangular matrix (right)

Property of upper and lower triangular matrices

Theorem
If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are $n \times n$ triangular matrices. Then:

$$
A+B, \quad k A, \quad A B
$$

are triangular matrices w.r.t. diagonals:
$\left(a_{11}+b_{11}, \ldots, a_{n n}+b_{n n}\right),\left(k a_{11}, \ldots, k a_{n n}\right),\left(a_{11} b_{11}, \ldots, a_{n n} b_{n n}\right)$

Symmetric matrices

A matrix A is symmetric if $A^{T}=A$, i.e. $a_{i j}=a_{j i}$ for every $i, j \in\{1,2, \ldots, n\}$.
It is skew-symmetric if $A^{T}=-A$.
Example

$$
A=\left[\begin{array}{ccc}
2 & -3 & 5 \\
-3 & 6 & 7 \\
5 & 7 & -8
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccc}
0 & 3 & -4 \\
-3 & 0 & 5 \\
4 & -5 & 0
\end{array}\right]
$$

A is a symmetric matrix, and B is a skew-symmetric matrix.

Can you find other examples? Find an example of matrix that is neither symmetric nor skew-symmetric.

Normal matrices

A matrix A is normal if $A A^{T}=A^{T} A$.
Example
Let $A=\left[\begin{array}{cc}6 & -3 \\ 3 & 6\end{array}\right]$. Then:

$$
\begin{aligned}
& A A^{T}=\left[\begin{array}{cc}
6 & -3 \\
3 & 6
\end{array}\right]\left[\begin{array}{cc}
6 & 3 \\
-3 & 6
\end{array}\right]=\left[\begin{array}{cc}
45 & 0 \\
0 & 45
\end{array}\right] \\
& A^{T} A=\left[\begin{array}{cc}
6 & 3 \\
-3 & 6
\end{array}\right]\left[\begin{array}{cc}
6 & -3 \\
3 & 6
\end{array}\right]=\left[\begin{array}{cc}
45 & 0 \\
0 & 45
\end{array}\right]
\end{aligned}
$$

Since $A A^{T}=A^{T} A$, the matrix A is normal.

Exercise of square matrices

- Create 3 groups;
- Each group discusses about the application of the following matrices in CS:
- Upper (lower) triangular matrices;
- Symmetric matrices;
- Normal matrices.
- Write your discussion's result on a piece of paper (i.e., 1 page), and submit it.

Part 3: Block matrices

Block matrices

Using a system of horizontal and vertical (dashed) lines, a matrix A can be partitioned into submatrices called blocks (or cells) of A.

Example
$\left(\begin{array}{cc|cc|c}1 & -2 & 0 & 1 & 3 \\ 2 & 3 & 5 & 7 & -2 \\ \hline 3 & 1 & 4 & 5 & 9 \\ 4 & 6 & -3 & 1 & 8\end{array}\right)\left(\begin{array}{cc|ccc}1 & -2 & 0 & 1 & 3 \\ \hline 2 & 3 & 5 & 7 & -2 \\ 3 & 1 & 4 & 5 & 9 \\ \hline 4 & 6 & -3 & 1 & 8\end{array}\right)\left(\begin{array}{ccc|cc}1 & -2 & 0 & 1 & 3 \\ 2 & 3 & 5 & 7 & -2 \\ \hline 3 & 1 & 4 & 5 & 9 \\ 4 & 6 & -3 & 1 & 8\end{array}\right)$

Operations on block matrices

Let $A=\left[A_{i j}\right]$ and $B=\left[B_{i j}\right]$ are block matrices with the same numbers of row and column blocks, and suppose that corresponding blocks have the same size.

$$
A+B=\left[\begin{array}{cccc}
A_{11}+B_{11} & A_{12}+B_{12} & \cdots & A_{1 n}+B_{1 n} \\
A_{11}+B_{11} & A_{12}+B_{12} & \cdots & A_{1 n}+B_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
A_{m 1}+B_{m 1} & A_{m 2}+B_{m 2} & \cdots & A_{m n}+B_{m n}
\end{array}\right]
$$

and

$$
k A=\left[\begin{array}{cccc}
k A_{11} & k A_{12} & \cdots & k A_{1 n} \\
k A_{21} & k A_{22} & \cdots & k A_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
k A_{m 1} & k A_{m 2} & \cdots & k A_{m n}
\end{array}\right]
$$

Square block matrices

A block matrix M is called a square block matrix if:

1. M is a square matrix.
2. The blocks (seen as entries) form a square matrix.
3. The diagonal blocks are also square matrices.

Example

$$
A=\left(\begin{array}{ll|ll|l}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 \\
\hline 9 & 8 & 7 & 6 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 \\
3 & 5 & 3 & 5 & 3
\end{array}\right) \quad B=\left(\begin{array}{ll|ll|l}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 \\
\hline 9 & 8 & 7 & 6 & 5 \\
4 & 4 & 4 & 4 & 4 \\
\hline 3 & 5 & 3 & 5 & 3
\end{array}\right)
$$

Which one of the matrices is a square block matrix?

Square block matrices

A block matrix M is called a square block matrix if:

1. M is a square matrix.
2. The blocks (seen as entries) form a square matrix.
3. The diagonal blocks are also square matrices.

Example

$$
A=\left(\begin{array}{ll|ll|l}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 \\
\hline 9 & 8 & 7 & 6 & 5 \\
\hline 4 & 4 & 4 & 4 & 4 \\
3 & 5 & 3 & 5 & 3
\end{array}\right) \quad B=\left(\begin{array}{ll|ll|l}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 \\
\hline 9 & 8 & 7 & 6 & 5 \\
4 & 4 & 4 & 4 & 4 \\
\hline 3 & 5 & 3 & 5 & 3
\end{array}\right)
$$

Which one of the matrices is a square block matrix?
B is a square block matrix.

Block diagonal matrices

A block diagonal matrix is a square block matrix $M=\left[A_{i j}\right]$ s.t. the non-diagonal blocks are zero matrices.
Example

$$
\left(\begin{array}{ll|ll|l}
1 & 2 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 7 & 6 & 0 \\
0 & 0 & 4 & 4 & 0 \\
\hline 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

A block diagonal matrix is often denoted as $M=\operatorname{diag}\left(A_{11}, A_{22}, \ldots, A_{r r}\right)$

Determinants and inverses of small matrices

The square matrix A is said to be invertible or non-singular if $\exists B$ s.t.:

$$
A B=B A=I \quad \text { where } I \text { is the identity matrix }
$$

Note: The matrix B is single (exactly one inverse), and is called the inverse of A, which is denoted by A^{-1}. The relationship A and B is symmetric:

If B is the inverse of A, then A is the inverse of B, i.e.

$$
\left(A^{-1}\right)^{-1}=A
$$

Example
Let $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ dan $B=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$ Hence:

$$
A B=\left[\begin{array}{cc}
6-5 & -10+10 \\
3-3 & -5+6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So A and B are inverses.
(C) Dewi Sintiari/CS Undiksha

Practice and review

Given the following matrix:

$$
A=\left[\begin{array}{ll}
2 & 5 \\
1 & 3
\end{array}\right] \quad \text { dan }\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]
$$

- Is B the inverse of A ?
- Is A the inverse of B ?

Solution.

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { dan } \quad B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

So A and B are inverses.
Question. Can you find two square matrices A and B of size 2×2, where B is the inverse of A but A is not the inverse of B ?

Practice and review

Think back to your lessons in high school.
Find the inverse of:

$$
A=\left[\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right] \quad \operatorname{dan} \quad B=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]
$$

Solution.

$|A|=2 \cdot 5-3 \cdot 4=10-12=-2$. Since $|A| \neq 0$, then matrix A has an inverse.

$$
A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
5 & -3 \\
-4 & 2
\end{array}\right]=\left[\begin{array}{cc}
-\frac{5}{2} & \frac{3}{2} \\
2 & -1
\end{array}\right]
$$

Meanwhile, $|B|=1 \cdot 6-3 \cdot 2=6-6=0$. So the matrix B does not have an inverse or is a singular matrix.

Exercise

(Practice this at home!)

1. Find an algorithm for matrix multiplication

Given two matrices:

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -2 \\
3 & 1 & 9 \\
4 & 6 & 8
\end{array}\right) \quad B=\left(\begin{array}{cccc}
0 & 2 & 1 & 4 \\
-1 & 1 & 0 & 0 \\
2 & 3 & -1 & 4
\end{array}\right)
$$

- Compute $A \times B$.
- Describe the step-by-step procedure to compute $A \times B$ for any matrix $A_{m \times k}$ and $B_{k \times n}$.
- Write the procedure in algorithm (you may write it as a pseudocode).

2. How to solve matrix multiplication using block matrix?

Given two matrices:

$$
A=\left(\begin{array}{ccc}
1 & -2 & 3 \\
2 & 3 & -2 \\
3 & 1 & 9 \\
4 & 6 & 8
\end{array}\right) \quad B=\left(\begin{array}{cccc}
0 & 2 & 1 & 4 \\
-1 & 1 & 0 & 0 \\
2 & 3 & -1 & 4
\end{array}\right)
$$

Compute $A \times B$.
What if the two matrices are written in block matrices?

$$
A=\left(\begin{array}{cc|c}
1 & -2 & 3 \\
2 & 3 & -2 \\
\hline 3 & 1 & 9 \\
4 & 6 & 8
\end{array}\right) \quad B=\left(\begin{array}{cc|cc}
0 & 2 & 1 & 4 \\
-1 & 1 & 0 & 0 \\
\hline 2 & 3 & -1 & 4
\end{array}\right)
$$

Can you derive the step-by-step of block matrix multiplication?

to be continued...

