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Motivating example (1)
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Motivating example (2)
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Motivating example (3)
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Motivating example (4)
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Then...what can you say about matrix?
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Learning objectives

After this lecture, you should be able to:

1. Define and write the components of a matrix (row, column,
diagonal, and entry) correctly.

2. Perform the operations between matrices, such as: scalar
multiplication, matrix addition, matrix mutiplication,
transpose, powering of matrix, and polynomial of matrix.

3. Apply the properties of matrix operations to solve a problem.

4. Explain the concept and properties of square matrix.

5. Apply the concept of block matrices to solve matrix operation.
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Part 1: Matrices and their
operations
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Formal definition of matrices
A matrix A over a field K (or simply a matrix A, when K is implicit), is a
rectangular array of scalars:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn


The rows of matrix A are the m horizontal lists:

(a11, a12, . . . , a1n), (a21, a22, . . . , a2n), . . . , (am1, am2, . . . , amn)

The columns of matrix A are the n vertical lists:
a11
a21
· · ·
am1

 ,


a12
a22
· · ·
am3

 , . . . ,


a1n
a2n
· · ·
amn


Note: So, a matrix is composed by a set of vectors.
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Formal definition of matrices

The element aij of matrix A (on row i , column j) is called ij-entry
or ij-element.

We write the matrix as: A = [aij ].

A is a matrix of size m × n.

• if m = 1 (only one row), then it is called row matrix or row
vector;

• if n = 1 (only one column), then it is called column matrix or
column vector.

A is called zero matrix if all entries of the matrix are zero.
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Example

• Row matrix: [1 2 3]

• Column matrix:

1
2
3


• Zero matrix:

[
0 0 0
0 0 0

]

• A 3× 2 matrix:

1 2
3 4
5 6


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Matrix operations

We are going to discuss:

1. Scalar multiplication

2. Matrix addition

3. Matrix multiplication

4. Transpose matrix

5. Power of matrix

6. Polynomial of matrix
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1. Scalar multiplication

The product of matrix A = [aij ] with a scalar k ∈ R is defined as:

kA =


ka11 ka12 · · · ka1n
ka21 ka22 · · · ka2n
· · · · · · · · · · · ·
kam1 kam2 · · · kamn


Moreover, −A = (−1)A.
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2. Matrix addition

Let A = [aij ] and B = [bij ] be matrices of the same size m × n.
The sum of A and B is defined as:

A + B =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n
· · · · · · · · · · · ·

am1 + bm1 am2 + bm2 · · · amn + bmn


Moreover, A− B = A + (−B).
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Properties of matrices under addition and scalar
multiplication

Theorem
Let A, B, and C be matrices with the same size, and k, k ′ ∈ R. Then:

• (A + B) + C = A + (B + C ) (associativity)

• A + B = B + A (commutativity)

• A + 0 = A (0 is the identity elt over addition)

• A + (−A) = 0 (invers matrix over addition)

• k(A + B) = kA + kB (distributivity)

• (k + k ′)A = kA + k ′A (distributivity w.r.t. scalar)

• (kk ′)A = k(k ′A) (associativity w.r.t. scalar)

• 1 · A = A (1 is the identity elt over scalar multiplication)

Note: Hence, the sum A1 + A2 + · · ·+ An can be done in any order, and

does not require any parenthesis.
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Example

Given the following matrices:

A =

 1 2 3
−1 2 1
5 5 5

 B =

 2 4 6
1 2 2
−1 0 4

 C =

[
1 2 3
9 8 7

]

Simplify the following matrix expression.

• A + B

• B − C

• −3A + 2B

• 5A + 2B − 3C

• 3(A− C ) + B

• A− A
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3. Matrix multiplication

Special case: the product of a row matrix and a column matrix
having the same number of elements.

Let A = [ai ] be a row matrix and B = [bi ] be a column matrix.
Then the product AB is defined as:

AB = [a1 a2 . . . an]


b1
b2
. . .
bn

 = a1b1 + a2b2 + · · ·+ anbn =
n∑

i=1

aibi

Example

[7,−4, 5]

 3
2
−1

 = 7(3) + (−4)(2) + 5(−1) = 21− 8− 5 = 8

(or this can be written as [8])
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Matrix multiplication

Let A = [aij ] and B = [bij ] are matrices of size m × p and p × n
respectively. Then the product of A and B is a matrix AB of size
m × n defined by:

a11 · · · a1p
· · · · ·
ai1 · · · aip
· · · · ·

am1 · · · amp

×

b11 · · · b1j · · · b1n
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

bp1 · · · bpj · · · bpn

 =


c11 · · · c1n
· · · · ·
· cij ·
· · · · ·

cm1 · · · cmn


where cij = ai1b1j + ai2b2j + · · ·+ aipbpj =

∑p
k=1 aikbkj
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Example

Find AB where A =

[
1 3
2 −1

]
and B =

[
2 0 −4
5 −2 6

]
.

Multiply each row of A with each column of B.

Since A is of size 2× 2 and B is of size 2× 3, then AB is of size
2× 3.

AB =

[
2 + 15 0− 6 −4 + 18
4− 5 0 + 2 −8− 6

]
=

[
17 −6 14
−1 2 −14

]
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Relation between matrix addition and matrix multiplication

Theorem
Let A, B, and C be matrices. Then whenever the products and
sums are defined,

• (AB)C = A(BC ) (associative)

• A(B + C ) = AB + AC (left distributive)

• (B + C )A = BA + CA (right distributive)

• k(AB) = (kA)B = A(kB) where k ∈ R
• 0A = 0 and A0 = 0, where 0 is the zero matrix
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Transpose matrix

The transpose of a matrix A, denoted by AT , is the the matrix
obtained by writing the columns of A, in order, as rows.

If A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
am1 am2 · · · amn

, then AT =


a11 a21 · · · am1

a12 a22 · · · am2

· · · · · · · · · · · ·
a1n a2n · · · amn


Note: If A has size m × n, then AT has size n ×m.

Example[
1 2 3
4 5 6

]T
=

1 4
2 5
3 6

 and
[
1 −3 5

]T
=

 1
−3
5


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Operations on matrix transpose

Theorem
If A and B are matrices such that the following operations are well
defined, then:

1. (AT )T = A

2. (A + B)T = AT + BT

3. (A− B)T = AT − BT

4. (kA)T = kAT

5. (AB)T = BTAT

Note: If A has order m × n, then AT has order n ×m.
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Powers of Matrices, Polynomials in Matrices

Let A be an n-square matrix over R (or over other fields). Powers
of A are defined as:

A2 = AA, A3 = A2A, . . . , An+1 = AnA, . . . , and A0 = 1

We can also define polynomials in the matrix A. For any
polynomial:

f (x) = a0 + a1x + a2x
2 + · · ·+ anx

n, where ai ∈ R,

Polynomial f (A) is defined as:

f (A) = a0I + a1A + a2A
2 + · · ·+ anA

n

Note: If f (A) = 0 (the zero matrix), then A is called a zero or
root of f (x).
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Example

Let A =

[
1 2
3 −4

]
. Then:

A2 =

[
1 2
3 −4

] [
1 2
3 −4

]
=

[
7 −6
−9 22

]
, and

A3 = A2A =

[
7 −6
−9 22

] [
1 2
3 −4

]
=

[
−11 38
57 −106

]

Suppose f (x) = 2x2 − 3x + 5, then:

f (A) = 2

[
7 −6
−9 22

]
+ 3

[
1 2
3 −4

]
+ 5

[
1 0
0 1

]
=

[
16 −18
−27 61

]
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Exercise

1. Form a group of 3 students;

2. Do the following exercises (Howard Anton’s book):

• Number 1 & 2 (2 questions @)
• Number 3-6 (3 questions @)
• Number 7-8
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Part 2: Square matrices
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Square matrices

A square matrix is a matrix with the same number of rows and
columns.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann


Example

A =

1 2 3
4 5 6
7 8 9


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Diagonal and Trace
Let A = [aij ] be an n-square matrix. The diagonal or main diagonal
of A consists of the elements with the same subscripts, that is:

a11, a22, . . . , ann

The trace of A, denoted by tr(A) is the sum of the diagonal
elements of A.

tr(A) = a11 + a22 + · · ·+ ann =
n∑

i=1

aii

Theorem (Properties of trace)

• tr(A + B) = tr(A) + tr(B)

• tr(kA) = k tr(A)

• tr(AT ) = tr(A)

• tr(AB) = tr(BA) (recall that AB 6= BA is not always correct)
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Identity matrix, scalar matrices

The identity or unit matrix, denoted by In (or simply I ) is the
square matrix n × n, with 1’s on the diagonal, and 0’s elsewhere.

I =


1 0 · · · 0
0 1 · · · 0

· · · · · · . . . · · ·
0 0 · · · 1


I has a similar role as the scalar 1 for R.

Important property: When it is well-defined,

IA = A

For some scalar k ∈ R, the matrix kI is called scalar matrix
corresponding to scalar k .
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Special types of square matrices

A matrix D = [dij ] is a diagonal matrix if its nondiagonal entries
are all zero.

D = diag(d11, d22, . . . , dnn)

where some or all the dii may be zero.

Example 
3 0 · · · 0
0 −5 · · · 0

· · · · · · . . . · · ·
0 0 · · · 9


Hence, identity matrices and scalar matrices are also diagonal
matrices.
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Upper and lower triangular matrices

A square matrix A = [aij ] is upper triangular, if all entries below
the (main) diagonal are equal to 0.

A lower triangular matrix is a square matrix whose entries above
the diagonal are all zero.


a11 a12 a13 · · · a1n
0 a22 a23 · · · a2n
0 0 a33 · · · a3n

· · · · · · · · ·
. . . · · ·

0 0 0 · · · ann




a11 0 0 · · · 0
a21 a22 0 · · · 0
a31 a32 a33 · · · 0

· · · · · · · · ·
. . . · · ·

an1 an2 an3 · · · ann


Upper triangular matrix (left) and lower triangular matrix (right)
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Property of upper and lower triangular matrices

Theorem
If A = [aij ] and B = [bij ] are n × n triangular matrices. Then:

A + B, kA, AB

are triangular matrices w.r.t. diagonals:

(a11+b11, . . . , ann+bnn), (ka11, . . . , kann), (a11b11, . . . , annbnn)
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Symmetric matrices

A matrix A is symmetric if AT = A, i.e. aij = aji for every
i , j ∈ {1, 2, . . . , n}.

It is skew-symmetric if AT = −A.

Example

A =

 2 −3 5
−3 6 7
5 7 −8

 and B =

 0 3 −4
−3 0 5
4 −5 0


A is a symmetric matrix, and B is a skew-symmetric matrix.

Can you find other examples? Find an example of matrix that is
neither symmetric nor skew-symmetric.
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Normal matrices

A matrix A is normal if AAT = ATA.

Example

Let A =

[
6 −3
3 6

]
. Then:

AAT =

[
6 −3
3 6

] [
6 3
−3 6

]
=

[
45 0
0 45

]

ATA =

[
6 3
−3 6

] [
6 −3
3 6

]
=

[
45 0
0 45

]
Since AAT = ATA, the matrix A is normal.
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Exercise of square matrices

• Create 3 groups;

• Each group discusses about the application of the following
matrices in CS:
• Upper (lower) triangular matrices;
• Symmetric matrices;
• Normal matrices.

• Write your discussion’s result on a piece of paper (i.e., 1
page), and submit it.
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Part 3: Block matrices
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Block matrices

Using a system of horizontal and vertical (dashed) lines, a matrix A can
be partitioned into submatrices called blocks (or cells) of A.

Example


1 −2 0 1 3
2 3 5 7 −2

3 1 4 5 9
4 6 −3 1 8




1 −2 0 1 3

2 3 5 7 −2
3 1 4 5 9

4 6 −3 1 8




1 −2 0 1 3
2 3 5 7 −2

3 1 4 5 9
4 6 −3 1 8


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Operations on block matrices

Let A = [Aij ] and B = [Bij ] are block matrices with the same
numbers of row and column blocks, and suppose that
corresponding blocks have the same size.

A + B =


A11 + B11 A12 + B12 · · · A1n + B1n

A11 + B11 A12 + B12 · · · A1n + B1n

· · · · · · · · · · · ·
Am1 + Bm1 Am2 + Bm2 · · · Amn + Bmn


and

kA =


kA11 kA12 · · · kA1n

kA21 kA22 · · · kA2n

· · · · · · · · · · · ·
kAm1 kAm2 · · · kAmn


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Square block matrices

A block matrix M is called a square block matrix if:

1. M is a square matrix.

2. The blocks (seen as entries) form a square matrix.

3. The diagonal blocks are also square matrices.

Example

A =


1 2 3 4 5
1 1 1 1 1

9 8 7 6 5

4 4 4 4 4
3 5 3 5 3

 B =


1 2 3 4 5
1 1 1 1 1

9 8 7 6 5
4 4 4 4 4

3 5 3 5 3


Which one of the matrices is a square block matrix?

B is a square block matrix.
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Block diagonal matrices

A block diagonal matrix is a square block matrix M = [Aij ] s.t. the
non-diagonal blocks are zero matrices.

Example 
1 2 0 0 0
1 1 0 0 0

0 0 7 6 0
0 0 4 4 0

0 0 0 0 3


A block diagonal matrix is often denoted as M = diag(A11,A22, . . . ,Arr )
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Determinants and inverses of small matrices

The square matrix A is said to be invertible or non-singular if ∃B s.t.:

AB = BA = I where I is the identity matrix

Note: The matrix B is single (exactly one inverse), and is called the
inverse of A, which is denoted by A−1. The relationship A and B is
symmetric:

If B is the inverse of A, then A is the inverse of B, i.e.

(A−1)−1 = A

Example

Let A =

[
2 5
1 3

]
dan B =

[
3 −5
−1 2

]
Hence:

AB =

[
6− 5 −10 + 10
3− 3 −5 + 6

]
=

[
1 0
0 1

]
So A and B are inverses. 41 / 47 c© Dewi Sintiari/CS Undiksha



Practice and review

Given the following matrix:

A =

[
2 5
1 3

]
dan

[
3 −5
−1 2

]

• Is B the inverse of A?

• Is A the inverse of B?

Solution.

AB =

[
1 0
0 1

]
dan BA =

[
1 0
0 1

]
So A and B are inverses.

Question. Can you find two square matrices A and B of size 2× 2,
where B is the inverse of A but A is not the inverse of B?
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Practice and review

Think back to your lessons in high school.

Find the inverse of:

A =

[
2 3
4 5

]
dan B =

[
1 3
2 6

]

Solution.

|A| = 2 · 5− 3 · 4 = 10− 12 = −2. Since |A| 6= 0, then matrix A has an
inverse.

A−1 =
1

−2

[
5 −3
−4 2

]
=

[
− 5

2
3
2

2 −1

]

Meanwhile, |B| = 1 · 6− 3 · 2 = 6− 6 = 0. So the matrix B does not
have an inverse or is a singular matrix.
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Exercise
(Practice this at home!)
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1. Find an algorithm for matrix multiplication

Given two matrices:

A =


1 −2 3
2 3 −2
3 1 9
4 6 8

 B =

 0 2 1 4
−1 1 0 0
2 3 −1 4



• Compute A× B.

• Describe the step-by-step procedure to compute A× B for any
matrix Am×k and Bk×n.

• Write the procedure in algorithm (you may write it as a
pseudocode).
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2. How to solve matrix multiplication using block matrix?

Given two matrices:

A =


1 −2 3
2 3 −2
3 1 9
4 6 8

 B =

 0 2 1 4
−1 1 0 0
2 3 −1 4


Compute A× B.

What if the two matrices are written in block matrices?

A =


1 −2 3
2 3 −2

3 1 9
4 6 8

 B =

 0 2 1 4
−1 1 0 0

2 3 −1 4



Can you derive the step-by-step of block matrix multiplication?
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to be continued...
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