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Motivating example (1)

Mon Tue Wed Thu  Fri

\

John /_30 10 20 9 14

Amy 10 9 7 19 25

Bob 20 7 0 10 20
o _/

A matrix of messages
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Motivating example (2)

Jan Feb Mar Apr  May

Rent 1000 1000 1050 1050 1050

Grocery 300 250 350 310 305

Car 400 450 350 300 320

A matrix of expenses
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Motivating example (3)

New
Boston York London

4 N

Boston 0 187 3269

New 187 0 3459
York

London 32693459 0
o /
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Motivating example (4)

MOTIVATION MATRIX

Enter your sub headline here

| KNOW WHAT TO DO | DON'T KNOW WHAT TO DO

YOU ARE DOING IT! YOU ARE STUCK
Keep it up! Take a break

I WANT TO

YOU ARE LEARN MORE
ﬁ"’ PROCRASTINATING ABOUTIT

Start! Small How do others do it?

=

wy
Z0
-
o
ZD
B
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Then...what can you say about matrix?
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Learning objectives

After this lecture, you should be able to:

1.

Define and write the components of a matrix (row, column,
diagonal, and entry) correctly.

Perform the operations between matrices, such as: scalar
multiplication, matrix addition, matrix mutiplication,
transpose, powering of matrix, and polynomial of matrix.

Apply the properties of matrix operations to solve a problem.
Explain the concept and properties of square matrix.

Apply the concept of block matrices to solve matrix operation.
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Part 1: Matrices and their
operations
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Formal definition of matrices

A matrix A over a field K (or simply a matrix A, when K is implicit), is a
rectangular array of scalars:

a1 a12 ain

a a a
A= 21 22 2n

amil am2 Amn

The rows of matrix A are the m horizontal lists:

(3117312»---;31n)7 (32133227"'732n)7 M (amlyam27-~-aamn)

The columns of matrix A are the n vertical lists:

ai a12 ain

any ann azn
y s ey

am1 am3 amn

Note: So, a matrix is composed by a set of vectors.

9/47 © Dewi Sintiari/CS Undiksha



Formal definition of matrices

The element aj; of matrix A (on row i, column j) is called ij-entry
or ij-element.

We write the matrix as: A = [aj].

A is a matrix of size m x n.

e if m =1 (only one row), then it is called row matrix or row
vector;

e if n=1 (only one column), then it is called column matrix or
column vector.

A is called zero matrix if all entries of the matrix are zero.
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Example

® Row matrix: [1 2 3]

1
e Column matrix; |2
3
® /ero matrix: 000
0 0O
1 2
e A3x2matrix: |3 4
5 6
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Matrix operations

We are going to discuss:

o R wWwh =

Scalar multiplication
Matrix addition
Matrix multiplication
Transpose matrix
Power of matrix

Polynomial of matrix
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1. Scalar multiplication

The product of matrix A = [a;;] with a scalar k € R is defined as:

kai1  kaix -+ kaip
KA — k321 k322 s kaz,,
kaml k3m2 T kamn

Moreover, —A = (—1)A.
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2. Matrix addition

Let A = [a;] and B = [b;;] be matrices of the same size m x n.
The sum of A and B is defined as:

ai1 +bin a2+ bz - ain+ bin
e e
am1 + bml am2 + bm2 ccc amn Tt bmn

Moreover, A— B = A+ (—B).
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Properties of matrices under addition and scalar
multiplication

Theorem
Let A, B, and C be matrices with the same size, and k, k' € R. Then:

e (A+B)+C=A+(B+ () (associativity)
°* A+B=B+A (commutativity)
* A+0=A (0 is the identity elt over addition)
°* A+(-A)=0 (invers matrix over addition)
® k(A+B)=kA+ kB (distributivity)
o (k+k)A=kKA+ KA (distributivity w.r.t. scalar)
® (kk'")A = k(k'A) (associativity w.r.t. scalar)
°e1-A=A (1 is the identity elt over scalar multiplication)

Note: Hence, the sum A; + A, + -+ - + A, can be done in any order, and
does not require any parenthesis.
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Example

Given the following matrices:

1 2 3
A=1-1 2 1 B =
5 55

Simplify the following matrix expression.

e A+B * 54+ 2B —3C
e B-C *3(A-C)+B
e —3A+2B c A-A
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3. Matrix multiplication

Special case: the product of a row matrix and a column matrix
having the same number of elements.

Let A = [a;] be a row matrix and B = [b;] be a column matrix.
Then the product AB is defined as:

b1
AB:[al a ... a,,] by :alb1+azb2+-~-+anbn:Za,-b,-
—
bn
Example
3
[7,-4,5]| 2 | =7(3) +(—4)(2) +5(-1) =21 -8 -5 =8
-1

(or this can be written as [8])
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Matrix multiplication

Let A = [a;] and B = [bj;] are matrices of size m x p and p X n
respectively. Then the product of A and B is a matrix AB of size
m x n defined by:

[811 ce o arp bip o by - by c1 - Cin
an o ap | x| e = cj
L,ml o amp bpy -+ by - bpn Col -+ Com
where Cij = an blj + a,-2b2j -+ a,p pj = Zk 1 :kka
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Example

Find AB where A = B _31] and B = [
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Example

. 1 3 2 0 -4
Find AB where A = [2 _1] and B = [5 2 6 ]
Multiply each row of A with each column of B.

Since A is of size 2 x 2 and B is of size 2 x 3, then AB is of size
2 x 3.

AB_[2+15 0—6 —4+18}_[17 —6 14]

4-5 0+2 -8-6 -1 2 -14
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Relation between matrix addition and matrix multiplication

Theorem
Let A, B, and C be matrices. Then whenever the products and
sums are defined,

* (AB)C = A(BC) (associative)
* A(B+ C)=AB+ AC (left distributive)
e (B+C)A=BA+CA (right distributive)

o k(AB) = (kA)B = A(kB) where k € R

® 0A =0 and A0 = 0, where 0 is the zero matrix
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Transpose matrix

The transpose of a matrix A, denoted by AT, is the the matrix
obtained by writing the columns of A, in order, as rows.

a1l di2 -+ dln di1 4a21 -+ amil
a a PR a a a o e a
dml dm2 - dmn dln d2pn *°° dmn

Note: If A has size m x n, then AT has size n x m.

Example
T 1 4 1
[}1 g g] — 125/ ad [1 -3 5]"=]-3
3 6 5
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Operations on matrix transpose

Theorem
If A and B are matrices such that the following operations are well
defined, then:

1. (AT =A

2. (A+B)T=AT + BT
3. (A—=B)T=AT —BT
4. (KA)T = kAT

5. (AB)T = BTAT

Note: If A has order m x n, then AT has order n x m.

22 /47 (© Dewi Sintiari/CS Undiksha



Powers of Matrices, Polynomials in Matrices

Let A be an n-square matrix over R (or over other fields). Powers
of A are defined as:

A2 =AA, A3=A%2A, ..., AT =A"A ..., and A°=1

We can also define polynomials in the matrix A. For any
polynomial:

f(x) = ao + a1x + axx?+ -+ apx", where a; € R,
Polynomial f(A) is defined as:
f(A) = agl + a1A+ 2A% + -+ + a,A"

Note: If f(A) = 0 (the zero matrix), then A is called a zero or
root of f(x).
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Example

1 2
Let A= [3 4

, 1 271 2] [7 -6
A _[3 —4] [3 —4}_[—9 22]’ and
s o, [7 -6][1 2] [-11 38
A _AA_[—g 22| [3 —4] T [ 57 —106
Suppose f(x) = 2x? — 3x + 5, then:

=2l et 2] -2

} . Then:
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Exercise

1. Form a group of 3 students;
2. Do the following exercises (Howard Anton’s book):

® Number 1 & 2 (2 questions @)
® Number 3-6 (3 questions @)
® Number 7-8
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Part 2: Square matrices
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Square matrices

A square matrix is a matrix with the same number of rows and
columns.

dil1 412 --- din
A= dz1 422 -+ dzp
dnl @n2 -°° dnn
Example
1 2 3
A=14 5 6
7 8 9
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Diagonal and Trace

Let A = [aj] be an n-square matrix. The diagonal or main diagonal
of A consists of the elements with the same subscripts, that is:

ai1, 422, ..., dnn

The trace of A, denoted by tr(A) is the sum of the diagonal
elements of A.

n
tr(A) =au +an+ - +am= Zaii
i=1

Theorem (Properties of trace)
e tr(A+ B) = tr(A) + tr(B)
o tr(kA) = k tr(A)
o tr(AT) = tr(A)
e tr(AB) = tr(BA) (recall that AB # BA is not always correct)
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Identity matrix, scalar matrices

The identity or unit matrix, denoted by /, (or simply /) is the
square matrix n x n, with 1's on the diagonal, and 0's elsewhere.

1 0 0

0 1 0
| =

o 0 --- 1

| has a similar role as the scalar 1 for R.

Important property: When it is well-defined,
A=A

For some scalar kK € R, the matrix kl is called scalar matrix
corresponding to scalar k.
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Special types of square matrices

A matrix D = [djj] is a diagonal matrix if its nondiagonal entries
are all zero.
D = diag(dn, d22, N d,,,,)

where some or all the d;; may be zero.

Example
3 0 0
0 -5 0
o 0 --- 9

Hence, identity matrices and scalar matrices are also diagonal
matrices.
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Upper and lower triangular matrices

A square matrix A = [ajj] is upper triangular, if all entries below
the (main) diagonal are equal to 0.

A lower triangular matrix is a square matrix whose entries above
the diagonal are all zero.

|_311 alp a3 - an a1 0 0 --- 0
0 ax» a3 -+ axn a; axp 0 -+ 0
0 0 a3 - as; asy axp a0 0
0 0 0 **°  dpn an1 an2 an3 T ann

Upper triangular matrix (left) and lower triangular matrix (right)
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Property of upper and lower triangular matrices

Theorem
If A= [aj] and B = [bjj] are n x n triangular matrices. Then:

A+ B, kA, AB
are triangular matrices w.r.t. diagonals:

(311+b117 ceey ann“‘bnn)a (kall, ey kann)a (allblla ey annbnn)
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Symmetric matrices

A matrix A is symmetric if AT = A, i.e. ajj = aj; for every
i,je{1,2,...,n}.

It is skew-symmetric if AT = —A.
Example
2 -3 5 0 3 -4
A=1|-3 6 7 and B=|-3 0 5
5 7 -8 4 -5 0

A is a symmetric matrix, and B is a skew-symmetric matrix.

Can you find other examples? Find an example of matrix that is
neither symmetric nor skew-symmetric.
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Normal matrices

A matrix A is normal if AAT = ATA.

Example

Let A= [6 -3

3 6
r [6 =3][6 3] [45 o0
AA_{36—36_045

S i e

Since AAT = AT A, the matrix A is normal.

} . Then:
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Exercise of square matrices

® Create 3 groups;

® Each group discusses about the application of the following
matrices in CS:

® Upper (lower) triangular matrices;
® Symmetric matrices;
¢ Normal matrices.

e Write your discussion’s result on a piece of paper (i.e., 1
page), and submit it.
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Part 3: Block matrices
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Block matrices

Using a system of horizontal and vertical (dashed) lines, a matrix A can
be partitioned into submatrices called blocks (or cells) of A.

Example
1 -2 ‘ 0o 1 ‘ 3 1 20 1 3 1 -2 o0 ‘ 103
2 3| 5 7] -2 2 315 7 —2 2 3 5 |7 -2
3 1] 4 5|09 3 1 4 5 09 3 1 4|5 9
4 6 | -3 1| 8 4 6 -3|1 8

4 6 | -3 1 8
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Operations on block matrices

Let A = [Aj] and B = [Bjj] are block matrices with the same
numbers of row and column blocks, and suppose that
corresponding blocks have the same size.

Ain+Bun A+ Bz - A+ B
A+ B— A11 + B A12+B12 Aln—l-Bln
Ami+Bmi Am2+Bm2 -+ Amn+ Bmn
and
kA1 kA .-+ kA,
A M K e ke,
kAml kAm2 o kAmn
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Square block matrices

A block matrix M is called a square block matrix if:
1. M is a square matrix.
2. The blocks (seen as entries) form a square matrix.

3. The diagonal blocks are also square matrices.

Example
1 2[3 4|5 1 2[3 4|5
1 1|1 1|1 1 1)1 1|1
A=| 9 8|7 6|5 B=|9 8[7 6|5
2 212 4la 4 414 44
3 5/3 5|3 3 5[3 5|3

Which one of the matrices is a square block matrix?
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Square block matrices

A block matrix M is called a square block matrix if:
1. M is a square matrix.
2. The blocks (seen as entries) form a square matrix.

3. The diagonal blocks are also square matrices.

Example
1 2[3 4|5 1 2[3 4|5
1 1|1 1|1 1 1)1 1|1
A=| 9 8|7 6|5 B=|9 8[7 6|5
2 212 4la 4 414 44
3 5/3 5|3 3 5[3 5|3

Which one of the matrices is a square block matrix?

B is a square block matrix.
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Block diagonal matrices

A block diagonal matrix is a square block matrix M = [A;] s.t. the
non-diagonal blocks are zero matrices.

Example

Ol OO | =K
oO|loOoO |~ DN
o~ N| OO
o~ O | OO
wl oo| oo

A block diagonal matrix is often denoted as M = diag(Ai1, Az, ..., Arr)
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Determinants and inverses of small matrices

The square matrix A is said to be invertible or non-singular if 3B s.t.:
AB=BA=1 where [ is the identity matrix

Note: The matrix B is single (exactly one inverse), and is called the
inverse of A, which is denoted by A~!. The relationship A and B is
symmetric:

If B is the inverse of A, then A is the inverse of B, i.e.

(A t=A

Example
2 5 3 -5 _
LetA:[1 3} dan B:[_l 2] Hence:
_[6-5 —10+10] [1 ©
AB_[33 5+6}_[0 1]

So A and B are inverses. 41/47 @ Dewi Sintiari/CS Undiksha



Practice and review

Given the following matrix:
2 5 3 -5
A_L 3} dan [_1 2}

® |s B the inverse of A?

® |s A the inverse of B?

Solution.

1 0 1 0
AB—{0 1] dan BA—{ }

So A and B are inverses.

Question. Can you find two square matrices A and B of size 2 x 2,
where B is the inverse of A but A is not the inverse of B?
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Practice and review

Think back to your lessons in high school.

Find the inverse of:

2 3 1 3
A—[4 5} dan B—[2 6]

Solution.

|A]=2-5—3-4=10—12 = —2. Since |A| # 0, then matrix A has an
inverse. ) s 3
-1 _ 5 *3 _ |73 2
A= {—4 21712 -1

Meanwhile, |B| =1-6—-3-2=6 —6 = 0. So the matrix B does not
have an inverse or is a singular matrix.
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Exercise

(Practice this at home!)
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1. Find an algorithm for matrix multiplication

Given two matrices:

;_32 _32 0 2 1 4
3 19 2 3 -1 4
4 6 8

® Compute A x B.

® Describe the step-by-step procedure to compute A x B for any
matrix A, xkx and Bixn.

® \Write the procedure in algorithm (you may write it as a
pseudocode).
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2. How to solve matrix multiplication using block matrix?

Given two matrices:

1

0 2 1 4

A:23_2 B=| -1 1 0 0

s 1.9 2 3 -1 4
4 6 8

Compute A x B.

What if the two matrices are written in block matrices?

;_32_32 0 2|1 4
A= B — -1 170 O

3 11]9

1 6| s 2 3|-1 4

Can you derive the step-by-step of block matrix multiplication?
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to be continued...
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